scholarly journals Size effects of mechanical metamaterials: a computational study based on a second-order asymptotic homogenization method

Author(s):  
Hua Yang ◽  
Wolfgang H. Müller

Abstract In this paper, size effects exhibited by mechanical metamaterials have been studied. When the sizescale of the metamaterials is reduced, stiffening or softening responses are observed in experiments. In order to capture both the stiffening and softening size effects fully, a second-order asymptotic homogenization method based on strain gradient theory is used. By this method, the metamaterials are homogenized and become effective strain gradient continua. The effective metamaterial parameters including the classical and strain gradient stiffness tensors are calculated. Comparisons between a detailed finite element analysis and the effective strain gradient continua model have been made for metamaterials under different boundary conditions, different aspect ratios, different unit cells (closed or open cells) and different topologies. It shows that both stiffening and softening size effects can be captured by using the effective strain gradient continua models.

PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Sergey Sheshenin ◽  
Nina Artamonova ◽  
Petr Klementyev

2016 ◽  
Vol 23 (2) ◽  
pp. 136-147
Author(s):  
David Guinovart-Sanjuán ◽  
Raffaella Rizzoni ◽  
Reinaldo Rodríguez-Ramos ◽  
Raúl Guinovart-Díaz ◽  
Julián Bravo-Castillero ◽  
...  

The elastic properties of a spherical heterogeneous structure with isotropic periodic components is analyzed and a methodology is developed using the two-scale asymptotic homogenization method (AHM) and spherical assemblage model (SAM). The effective coefficients are obtained via AHM for two different composites: (a) composite with perfect contact between two layers distributed periodically along the radial axis; and (b) considering a thin elastic interphase between the layers (intermediate layer) distributed periodically along the radial axis under perfect contact. As a result, the derived overall properties via AHM for homogeneous spherical structure have transversely isotropic behavior. Consequently, the homogenized problem is solved. Using SAM, the analytical exact solutions for appropriate boundary value problems are provided for different number of layers for the cases (a) and (b) in the spherical composite. The numerical results for the displacements, radial and circumferential stresses for both methods are compared considering a spherical composite material loaded by an inside pressure with the two cases of contact conditions between the layers (a) and (b).


Sign in / Sign up

Export Citation Format

Share Document