A modeling method of flywheel rotor based on finite element and model simplification

Author(s):  
Chuandi Zhou ◽  
Yibing Liu ◽  
Wancheng Zhu ◽  
Haosui Zhang
2014 ◽  
Vol 529 ◽  
pp. 92-96 ◽  
Author(s):  
Song Yi Guo ◽  
Chong Li ◽  
Wen Yi Li

Flywheel rotor is the very important component in the flywheel energy storage system (FESS). The key factors of rotor, such as rotor materials, geometry and fabrication process, have directly influence on the performance of FESS. At present, press-assembling the rotor with shrink-fit is used usually to increase strength of composite flywheel rotors filament wound in the radial direction. This paper is concerned that the Von Mises equivalent stress distribution of the metal hub and the radial stress distribution of the composite rim at the speed of 20000rpm by the 3D finite element method. The materials and corresponding minimum value of interference fit of the flywheel rotor are determined based on the analysis results.


Author(s):  
Brian Russ ◽  
Madan M. Dabbeeru ◽  
Andrew S. Chorney ◽  
Satyandra K. Gupta

Analyzing complex 3D assembly models using finite element analysis software requires suppressing parts that are not likely to influence the analysis results, but may significantly improve the computational performance during the analysis. The part suppression step often depends on many factors within the context and application of the model. Currently, most analysts perform this step manually. This step can take a long time to perform on a complex model and can be tedious in nature. In this paper, we present an approach to multi-part suppression based on the specified criteria. We have developed utilities in Pro/Engineer CAD system to identify parts that meet the specified criteria and suppress them. We present several examples to illustrate the value of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document