Maximal lactate steady state, respiratory compensation threshold and critical power

2003 ◽  
Vol 89 (3) ◽  
pp. 281-288 ◽  
Author(s):  
J. Dekerle ◽  
B. Baron ◽  
L. Dupont ◽  
J. Vanvelcenaher ◽  
P. Pelayo
2012 ◽  
Vol 37 (4) ◽  
pp. 736-743 ◽  
Author(s):  
Camila Coelho Greco ◽  
Renato Aparecido Corrêa Caritá ◽  
Jeanne Dekerle ◽  
Benedito Sérgio Denadai

This study aimed at assessing the sensitivity of both maximal lactate steady state (MLSS) and critical power (CP) in populations of different aerobic training status to ascertain whether CP is as sensitive as MLSS to a change in aerobic fitness. Seven untrained subjects (UT) (maximal oxygen uptake = 37.4 ± 6.5 mL·kg–1·min–1) and 7 endurance cyclists (T) (maximal oxygen uptake = 62.4 ± 5.2 mL·kg–1·min–1) performed an incremental test for maximal oxygen uptake estimation and several constant work rate tests for MLSS and CP determination. MLSS, whether expressed in mL·kg–1·min–1 (T: 51.8 ± 5.7 vs. UT: 29.0 ± 6.1) or % maximal oxygen uptake (T: 83.1 ± 6.8 vs. UT: 77.1 ± 4.5), was significantly higher in the T group. CP expressed in mL·kg–1·min–1 (T: 56.8 ± 5.1 vs. UT: 33.1 ± 6.3) was significantly higher in the T group as well but no difference was found when expressed in % maximal oxygen uptake (T: 91.1 ± 4.8 vs. UT: 88.3 ± 3.6). Whether expressed in absolute or relative values, MLSS is sensitive to aerobic training status and a good measure of aerobic endurance. Conversely, the improvement in CP with years of training is proportional to those of maximal oxygen uptake. Thus, CP might be less sensitive than MLSS for depicting an enhancement in aerobic fitness.


2020 ◽  
Vol 15 (1) ◽  
pp. 119-125 ◽  
Author(s):  
Erin Calaine Inglis ◽  
Danilo Iannetta ◽  
Daniel A. Keir ◽  
Juan M. Murias

Purpose: To evaluate whether the coherence in the oxygen uptake () associated with the respiratory compensation point (RCP), near-infrared spectroscopy-derived muscle deoxyhemoglobin ([HHb]) break point ([HHb]BP), and maximal lactate steady state (MLSS) would persist at the midpoint and endpoint of a 7-month training and racing season. Methods: Eight amateur male cyclists were tested in 3 separate phases over the course of a cycling season (PRE, MID, and POST). Testing at each phase included a ramp-incremental test to exhaustion to determine RCP and [HHb]BP. The PRE and POST phases also included constant power output rides to determine MLSS. Results: Compared with PRE, at both RCP and [HHb]BP was greater at MID (delta: RCP 0.23 [0.14] L·min−1, [HHb]BP 0.33 [0.17] L·min−1) and POST (delta: RCP 0.21 [0.12], [HHb]BP 0.30 [0.14] L·min−1) (P < .05). at MLSS also increased from PRE to POST (delta: 0.17 [12] L·min−1) (P < .05). was not different at RCP, [HHb]BP, and MLSS at PRE (3.74 [0.34], 3.64 [0.40], 3.78 [0.23] L·min−1) or POST (3.96 [0.25], 3.95 [0.32], 3.94 [0.18] L·min−1) respectively, and RCP (3.98 [0.33] L·min−1) and [HHb]BP (3.97 [0.34] L·min−1) were not different at MID (P > .05). PRE–MID and PRE–POST changes in associated with RCP, [HHb]BP, and MLSS were strongly correlated (range: r = .85–.90) and demonstrated low mean bias (range = −.09 to .12 L·min−1). Conclusions: At all measured time points, at RCP, [HHb]BP, and MLSS were not different. Irrespective of phase comparison, direction, or magnitude of changes, intraindividual changes between each index were strongly related, indicating that interindividual differences were reflected in the group mean response and that their interrelationships are beyond coincidental.


Author(s):  
Leonardo Trevisol Possamai ◽  
Fernando Klitzke Borszcz ◽  
Rafael Alves de Aguiar ◽  
Ricardo Dantas de Lucas ◽  
Tiago Turnes

2011 ◽  
Vol 25 (7) ◽  
pp. 2053-2058 ◽  
Author(s):  
Nilo M Okuno ◽  
Luiz AB Perandini ◽  
David Bishop ◽  
Herbert G Simões ◽  
Gleber Pereira ◽  
...  

2019 ◽  
Author(s):  
James Graeme Wrightson ◽  
Louis Passfield

Objectives: To examine the effect of exercise at and slightly above the maximal lactate steady state (MLSS) on self-efficacy, affect and effort, and their associations with exercise tolerance.Design: Counterbalanced, repeated measures designMethod: Participants performed two 30‐minute constant‐load cycling exercise at a power output equal to that at MLSS and 10 W above MLSS, immediately followed by a time‐to‐exhaustion test at 80% of their peak power output. Self-efficacy, affect and effort were measured before and after 30 minutes of cycling at and above MLSS.Results: Negative affect and effort higher, and self-efficacy and time to exhaustion were reduced, following cycling at MLSS + 10 W compared to cycling at the MLSS. Following exercise at the MLSS self-efficacy, affect and effort were all associated with subsequent time-to exhaustion. However, following exercise at MLSS + 10 W, only affect was associated with time-to exhaustion. Conclusions: Self efficacy, affect and effort are profoundly affected by physiological state, highlighting the influence of somatic states on perceptions and emotions during exercise. The affective response to exercise appears to be associated with exercise tolerance, indicating that the emotional, as well as physiological, responses should be considered when prescribing exercise training.


Sign in / Sign up

Export Citation Format

Share Document