Heart rate variability at different thermal comfort levels

2008 ◽  
Vol 103 (3) ◽  
pp. 361-366 ◽  
Author(s):  
Weiwei Liu ◽  
Zhiwei Lian ◽  
Yuanmou Liu
2017 ◽  
Vol 9 (5) ◽  
pp. 1465-1477 ◽  
Author(s):  
Kizito N. Nkurikiyeyezu ◽  
Yuta Suzuki ◽  
Guillaume F. Lopez

2019 ◽  
Vol 11 (19) ◽  
pp. 5387 ◽  
Author(s):  
Binyi Liu ◽  
Zefeng Lian ◽  
Robert D. Brown

Global climate change and intensifying heat islands have reduced human thermal comfort and health in urban outdoor environments. However, there has been little research that has focused on how microclimates affect human thermal comfort, both psychologically and physiologically. We investigated the effect of a range of landscape microclimates on human thermal comfort and health using questionnaires and physiological measurements, including skin temperature, skin conductance, and heart rate variability, and compared the results with the effect of prevailing climate conditions in open spaces. We observed that in landscape microclimates, thermal sensation votes significantly decreased from 1.18 ± 0.66 (warm–hot) to 0.23 ± 0.61 (neutral–slightly warm), and thermal comfort increased from 1.18 ± 0.66 (uncomfortable–neutral) to 0.23 ± 0.61 (neutral–comfortable). In the landscape microclimates, skin temperature and skin conductance decreased 0.3 ± 0.8 °C and 0.6 ± 1.0 μs, respectively, while in the control, these two parameters increased by 0.5 ± 0.9 °C and 0.2 ± 0.7 μs, respectively. Further, in landscape microclimates, subject heart rate variability increased significantly. These results suggest landscape microclimates improve human thermal comfort and health, both psychologically and physiologically. These findings can provide an evidence base that will assist urban planners in designing urban environments for the health and wellbeing of residents.


Author(s):  
Guoshan Wu ◽  
Heqing Liu ◽  
Shixian Wu ◽  
Guanglei Liu ◽  
Caihang Liang

This study aimed to determine whether heart rate variability (HRV) can express the thermal comfort of mine workers. Eight subjects ran on a treadmill (5.5 km/h) to simulate heavy labor in three kinds of mining environments (22 °C/90%, 26 °C/90%, 30 °C/90%), respectively. Based on the measured electrocardiogram (ECG) data, the HRV of the subjects was calculated. The results showed that the HRV indices changed obviously under different temperature environments. In the neutral and hot environment, except for the LF, TP and LF/HF, there were significant differences in each index. However, there was no significant difference between the cold and neutral environments. The R-R intervals, the very low-frequency power (VLF), pNN20 and SampEN had strong negative correlation with the thermal sensation of people from sitting to work (ρ < −0.700). These indices may be used as thermal comfort predictive biomarkers of mine workers.


Sign in / Sign up

Export Citation Format

Share Document