BK channel activation by tungstate requires the β1 subunit extracellular loop residues essential to modulate voltage sensor function and channel gating

2013 ◽  
Vol 466 (7) ◽  
pp. 1365-1375 ◽  
Author(s):  
Ana I. Fernández-Mariño ◽  
Miguel A. Valverde ◽  
José M. Fernández-Fernández
2007 ◽  
Vol 129 (3) ◽  
pp. 209-220 ◽  
Author(s):  
Olga M. Koval ◽  
Yun Fan ◽  
Brad S. Rothberg

BK (Maxi-K) channel activity is allosterically regulated by a Ca2+ sensor, formed primarily by the channel's large cytoplasmic carboxyl tail segment, and a voltage sensor, formed by its transmembrane helices. As with other voltage-gated K channels, voltage sensing in the BK channel is accomplished through interactions of the S1–S4 transmembrane segments with the electric field. However, the BK channel is unique in that it contains an additional amino-terminal transmembrane segment, S0, which is important in the functional interaction between BK channel α and β subunits. In this study, we used perturbation mutagenesis to analyze the role of S0 in channel gating. Single residues in the S0 region of the BK channel were substituted with tryptophan to give a large change in side chain volume; native tryptophans in S0 were substituted with alanine. The effects of the mutations on voltage- and Ca2+-dependent gating were quantified using patch-clamp electrophysiology. Three of the S0 mutants (F25W, L26W, and S29W) showed especially large shifts in their conductance–voltage (G-V) relations along the voltage axis compared to wild type. The G-V shifts for these mutants persisted at nominally 0 Ca2+, suggesting that these effects cannot arise simply from altered Ca2+ sensitivity. The basal open probabilities for these mutants at hyperpolarized voltages (where voltage sensor activation is minimal) were similar to wild type, suggesting that these mutations may primarily perturb voltage sensor function. Further analysis using the dual allosteric model for BK channel gating showed that the major effects of the F25W, L26W, and S29W mutations could be accounted for primarily by decreasing the equilibrium constant for voltage sensor movement. We conclude that S0 may make functional contact with other transmembrane regions of the BK channel to modulate the equilibrium between resting and active states of the channel's voltage sensor.


2013 ◽  
Vol 142 (5) ◽  
pp. 487-491 ◽  
Author(s):  
Ramon Latorre ◽  
Gustavo Contreras

2013 ◽  
Vol 110 (50) ◽  
pp. 20093-20098 ◽  
Author(s):  
Q. Zhang ◽  
P. Zhou ◽  
Z. Chen ◽  
M. Li ◽  
H. Jiang ◽  
...  

2012 ◽  
Vol 442 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Wendy González ◽  
Janin Riedelsberger ◽  
Samuel E. Morales-Navarro ◽  
Julio Caballero ◽  
Jans H. Alzate-Morales ◽  
...  

The uptake of potassium ions (K+) accompanied by an acidification of the apoplasm is a prerequisite for stomatal opening. The acidification (approximately 2–2.5 pH units) is perceived by voltage-gated inward potassium channels (Kin) that then can open their pores with lower energy cost. The sensory units for extracellular pH in stomatal Kin channels are proposed to be histidines exposed to the apoplasm. However, in the Arabidopsis thaliana stomatal Kin channel KAT1, mutations in the unique histidine exposed to the solvent (His267) do not affect the pH dependency. We demonstrate in the present study that His267 of the KAT1 channel cannot sense pH changes since the neighbouring residue Phe266 shifts its pKa to undetectable values through a cation–π interaction. Instead, we show that Glu240 placed in the extracellular loop between transmembrane segments S5 and S6 is involved in the extracellular acid activation mechanism. Based on structural models we propose that this region may serve as a molecular link between the pH- and the voltage-sensor. Like Glu240, several other titratable residues could contribute to the pH-sensor of KAT1, interact with each other and even connect such residues far away from the voltage-sensor with the gating machinery of the channel.


1998 ◽  
Vol 111 (3) ◽  
pp. 421-439 ◽  
Author(s):  
Catherine J. Smith-Maxwell ◽  
Jennifer L. Ledwell ◽  
Richard W. Aldrich

Substitution of the S4 of Shaw into Shaker alters cooperativity in channel activation by slowing a cooperative transition late in the activation pathway. To determine the amino acids responsible for the functional changes in Shaw S4, we created several mutants by substituting amino acids from Shaw S4 into Shaker. The S4 amino acid sequences of Shaker and Shaw S4 differ at 11 positions. Simultaneous substitution of just three noncharged residues from Shaw S4 into Shaker (V369I, I372L, S376T; ILT) reproduces the kinetic and voltage-dependent properties of Shaw S4 channel activation. These substitutions cause very small changes in the structural and chemical properties of the amino acid side chains. In contrast, substituting the positively charged basic residues in the S4 of Shaker with neutral or negative residues from the S4 of Shaw S4 does not reproduce the shallow voltage dependence or other properties of Shaw S4 opening. Macroscopic ionic currents for ILT could be fit by modifying a single set of transitions in a model for Shaker channel gating (Zagotta, W.N., T. Hoshi, and R.W. Aldrich. 1994. J. Gen. Physiol. 103:321–362). Changing the rate and voltage dependence of a final cooperative step in activation successfully reproduces the kinetic, steady state, and voltage-dependent properties of ILT ionic currents. Consistent with the model, ILT gating currents activate at negative voltages where the channel does not open and, at more positive voltages, they precede the ionic currents, confirming the existence of voltage-dependent transitions between closed states in the activation pathway. Of the three substitutions in ILT, the I372L substitution is primarily responsible for the changes in cooperativity and voltage dependence. These results suggest that noncharged residues in the S4 play a crucial role in Shaker potassium channel gating and that small steric changes in these residues can lead to large changes in cooperativity within the channel protein.


2011 ◽  
Vol 100 (3) ◽  
pp. 583a
Author(s):  
Janos Almassy ◽  
Ted Begenisich
Keyword(s):  

2009 ◽  
Vol 87 (6) ◽  
pp. 411-418 ◽  
Author(s):  
A.J. Horne ◽  
D. Fedida

Voltage clamp fluorimetry (VCF) utilizes fluorescent probes that covalently bind to cysteine residues introduced into proteins and emit light as a function of their environment. Measurement of this emitted light during membrane depolarization reveals changes in the emission level as the environment of the labelled residue changes. This allows for the correlation of channel gating events with movement of specific protein moieties, at nanosecond time resolution. Since the pioneering use of this technique to investigate Shaker potassium channel activation movements, VCF has become an invaluable technique used to understand ion channel gating. This review summarizes the theory and some of the data on the application of the VCF technique. Although its usage has expanded beyond voltage-gated potassium channels and VCF is now used in a number of other voltage- and ligand-gated channels, we will focus on studies conducted in Shaker potassium channels, and what they have told us about channel activation and inactivation gating.


Sign in / Sign up

Export Citation Format

Share Document