Delineating the organization of projection neuron subsets in primary visual cortex with multiple fluorescent rabies virus tracing

Author(s):  
Liang Li ◽  
Yajie Tang ◽  
Leqiang Sun ◽  
Jinsong Yu ◽  
Siheng Zhang ◽  
...  
2019 ◽  
Author(s):  
Liang Li ◽  
Yajie Tang ◽  
Leqiang Sun ◽  
Jinsong Yu ◽  
Hui Gong ◽  
...  

AbstractThe elegant functions of the brain are facilitated by sophisticated connections between neurons, the architecture of which is frequently characterized by one nucleus connecting to multiple targets via projection neurons. Delineating the sub-nucleus fine architecture of projection neurons in a certain nucleus could greatly facilitate its circuit, computational, and functional resolution. Here, we developed multi-fluorescent rabies virus to delineate the fine organization of corticothalamic projection neuron subsets in the primary visual cortex (V1). By simultaneously labeling multiple distinct subsets of corticothalamic projection neurons in V1 from their target nuclei in thalamus (dLGN, LP, LD), we observed that V1-dLGN corticothalamic neurons were densely concentrated in layer VI, except for several sparsely scattered neurons in layer V, while V1-LP and V1-LD corticothalamic neurons were localized to both layers V and VI. Meanwhile, we observed a fraction of V1 corticothalamic neurons targeting multiple thalamic nuclei, which was further confirmed by fMOST whole-brain imaging. We further conceptually proposed an upgraded sub-nucleus tracing system with higher throughput (21 subsets) for more complex architectural tracing. The multi-fluorescent RV tracing tool can be extensively applied to resolve architecture of projection neuron subsets, with a strong potential to delineate the computational and functional organization of these nuclei.


2021 ◽  
Author(s):  
Shenqin Yao ◽  
Quanxin Wang ◽  
Karla E Hirokawa ◽  
Benjamin Ouellette ◽  
Ruweida Ahmed ◽  
...  

Identification of the structural connections between neurons is a prerequisite to understanding brain function. We developed a pipeline to systematically map brain-wide monosynaptic inputs to specific neuronal populations using Cre-driver mouse lines and the recombinant rabies tracing system. We first improved the rabies virus tracing strategy to accurately identify starter cells and to efficiently quantify presynaptic inputs. We then mapped brain-wide presynaptic inputs to different excitatory and inhibitory neuron subclasses in the primary visual cortex and seven higher visual areas. Our results reveal quantitative target-, layer- and cell-class-specific differences in the retrograde connectomes, despite similar global input patterns to different neuronal populations in the same anatomical area. The retrograde connectivity we define is consistent with the presence of the ventral and dorsal visual information processing streams and reveals further subnetworks within the dorsal stream. The hierarchical organization of the entire visual cortex can be derived from intracortical feedforward and feedback pathways mediated by upper- and lower-layer input neurons, respectively. This study expands our knowledge of the brain-wide inputs regulating visual areas and demonstrates that our improved rabies virus tracing strategy can be used to scale up the effort in dissecting connectivity of genetically defined cell populations in the whole mouse brain.


2021 ◽  
Author(s):  
Shenqin Yao ◽  
Quanxin Wang ◽  
Karla Hirokawa ◽  
Benjamin Ouellette ◽  
Ruweida Ahmed ◽  
...  

Abstract Identification of the structural connections between neurons is a prerequisite to understanding brain function. We developed a pipeline to systematically map brain-wide monosynaptic inputs to specific neuronal populations using Cre-driver mouse lines and the recombinant rabies tracing system. We first improved the rabies virus tracing strategy to accurately identify starter cells and to efficiently quantify presynaptic inputs. We then mapped brain-wide presynaptic inputs to different excitatory and inhibitory neuron subclasses in the primary visual cortex and seven higher visual areas. Our results reveal quantitative target-, layer- and cell-class-specific differences in the retrograde connectomes, despite similar global input patterns to different neuronal populations in the same anatomical area. The retrograde connectivity we define is consistent with the presence of the ventral and dorsal visual information processing streams and reveals further subnetworks within the dorsal stream. The hierarchical organization of the entire visual cortex can be derived from intracortical feedforward and feedback pathways mediated by upper- and lower-layer input neurons, respectively. This study expands our knowledge of the brain-wide inputs regulating visual areas and demonstrates that our improved rabies virus tracing strategy can be used to scale up the effort in dissecting connectivity of genetically defined cell populations in the whole mouse brain.


Sign in / Sign up

Export Citation Format

Share Document