corticothalamic projection
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 1)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 15 ◽  
Author(s):  
Tolulope Adeyelu ◽  
Tanya Gandhi ◽  
Charles C. Lee

Sensory information in all modalities, except olfaction, is processed at the level of the thalamus before subsequent transmission to the cerebral cortex. This incoming sensory stream is refined and modulated in the thalamus by numerous descending corticothalamic projections originating in layer 6 that ultimately alter the sensitivity and selectivity for sensory features. In general, these sensory thalamo-cortico-thalamic loops are considered strictly unilateral, i.e., no contralateral crosstalk between cortex and thalamus. However, in contrast to this canonical view, we characterize here a prominent contralateral corticothalamic projection originating in the insular cortex, utilizing both retrograde tracing and cre-lox mediated viral anterograde tracing strategies with the Ntsr1-Cre transgenic mouse line. From our studies, we find that the insular contralateral corticothalamic projection originates from a separate population of layer 6 neurons than the ipsilateral corticothalamic projection. Furthermore, the contralateral projection targets a topographically distinct subregion of the thalamus than the ipsilateral projection. These findings suggest a unique bilateral mechanism for the top-down refinement of ascending sensory information.



2019 ◽  
Author(s):  
Liang Li ◽  
Yajie Tang ◽  
Leqiang Sun ◽  
Jinsong Yu ◽  
Hui Gong ◽  
...  

AbstractThe elegant functions of the brain are facilitated by sophisticated connections between neurons, the architecture of which is frequently characterized by one nucleus connecting to multiple targets via projection neurons. Delineating the sub-nucleus fine architecture of projection neurons in a certain nucleus could greatly facilitate its circuit, computational, and functional resolution. Here, we developed multi-fluorescent rabies virus to delineate the fine organization of corticothalamic projection neuron subsets in the primary visual cortex (V1). By simultaneously labeling multiple distinct subsets of corticothalamic projection neurons in V1 from their target nuclei in thalamus (dLGN, LP, LD), we observed that V1-dLGN corticothalamic neurons were densely concentrated in layer VI, except for several sparsely scattered neurons in layer V, while V1-LP and V1-LD corticothalamic neurons were localized to both layers V and VI. Meanwhile, we observed a fraction of V1 corticothalamic neurons targeting multiple thalamic nuclei, which was further confirmed by fMOST whole-brain imaging. We further conceptually proposed an upgraded sub-nucleus tracing system with higher throughput (21 subsets) for more complex architectural tracing. The multi-fluorescent RV tracing tool can be extensively applied to resolve architecture of projection neuron subsets, with a strong potential to delineate the computational and functional organization of these nuclei.





2010 ◽  
Vol 28 (8) ◽  
pp. 688-688
Author(s):  
R.F. Hevner ◽  
F. Bedogni ◽  
R.D. Hodge ◽  
G.E. Elsen ◽  
B.R. Nelson ◽  
...  




2005 ◽  
Vol 1055 (1-2) ◽  
pp. 15-24 ◽  
Author(s):  
Lynn Churchill ◽  
Kyo Yasuda ◽  
Tadanobu Yasuda ◽  
Kelly A. Blindheim ◽  
Michael Falter ◽  
...  




2004 ◽  
Vol 91 (2) ◽  
pp. 759-766 ◽  
Author(s):  
Liming Zhang ◽  
Edward G. Jones

Mutual inhibition between the GABAergic cells of the thalamic reticular nucleus (RTN) is important in regulating oscillations in the thalamocortical network, promoting those in the spindle range of frequencies over those at lower frequencies. Excitatory inputs to the RTN from the cerebral cortex are numerically large and particularly powerful in inducing spindles. However, the extent to which corticothalamic influences can engage the inhibitory network of the RTN has not been fully explored. Focal electrical stimulation of layer VI in the barrel cortex of the mouse thalamocortical slice in vitro resulted in prominent di- or polysynaptic inhibitory postsynaptic currents (IPSCs) in RTN cells under the experimental conditions used. The majority of cortically induced responses consisted of mixed PSCs in which the inhibitory component predominated or of large IPSCs alone, implying inhibition of neighboring cells by other, cortically excited RTN cells. Within the mixed PSCs, fixed and variable latency components could commonly be identified. IPSCs could be blocked by application of ionotropic glutamate receptor antagonists or of GABAA receptor antagonists, also indicating their dependence on corticothalamic excitation triggering disynaptic or polysynaptic inhibition. Spontaneous GABAA receptor-dependent IPSCs were routinely observed in the RTN and, taken together with the results of cortical stimulation, indicate the existence of a substantial network of intrareticular inhibitory connections that can be effectively recruited by the corticothalamic system. These results suggest activation of cortical excitatory inputs triggers the propagation of inhibitory currents within the RTN and support the view that activation of the RTN from the somatosensory cortex, although focused by the topography of the corticothalamic projection, is capable of disynaptically engaging the whole inhibitory network of the RTN, by local and probably by reentrant GABAA receptor–based synapses, thus spreading the corticothalamic influence throughout the RTN.



Sign in / Sign up

Export Citation Format

Share Document