scholarly journals A whole-brain monosynaptic input connectome to neuron classes in mouse visual cortex

2021 ◽  
Author(s):  
Shenqin Yao ◽  
Quanxin Wang ◽  
Karla E Hirokawa ◽  
Benjamin Ouellette ◽  
Ruweida Ahmed ◽  
...  

Identification of the structural connections between neurons is a prerequisite to understanding brain function. We developed a pipeline to systematically map brain-wide monosynaptic inputs to specific neuronal populations using Cre-driver mouse lines and the recombinant rabies tracing system. We first improved the rabies virus tracing strategy to accurately identify starter cells and to efficiently quantify presynaptic inputs. We then mapped brain-wide presynaptic inputs to different excitatory and inhibitory neuron subclasses in the primary visual cortex and seven higher visual areas. Our results reveal quantitative target-, layer- and cell-class-specific differences in the retrograde connectomes, despite similar global input patterns to different neuronal populations in the same anatomical area. The retrograde connectivity we define is consistent with the presence of the ventral and dorsal visual information processing streams and reveals further subnetworks within the dorsal stream. The hierarchical organization of the entire visual cortex can be derived from intracortical feedforward and feedback pathways mediated by upper- and lower-layer input neurons, respectively. This study expands our knowledge of the brain-wide inputs regulating visual areas and demonstrates that our improved rabies virus tracing strategy can be used to scale up the effort in dissecting connectivity of genetically defined cell populations in the whole mouse brain.

2021 ◽  
Author(s):  
Shenqin Yao ◽  
Quanxin Wang ◽  
Karla Hirokawa ◽  
Benjamin Ouellette ◽  
Ruweida Ahmed ◽  
...  

Abstract Identification of the structural connections between neurons is a prerequisite to understanding brain function. We developed a pipeline to systematically map brain-wide monosynaptic inputs to specific neuronal populations using Cre-driver mouse lines and the recombinant rabies tracing system. We first improved the rabies virus tracing strategy to accurately identify starter cells and to efficiently quantify presynaptic inputs. We then mapped brain-wide presynaptic inputs to different excitatory and inhibitory neuron subclasses in the primary visual cortex and seven higher visual areas. Our results reveal quantitative target-, layer- and cell-class-specific differences in the retrograde connectomes, despite similar global input patterns to different neuronal populations in the same anatomical area. The retrograde connectivity we define is consistent with the presence of the ventral and dorsal visual information processing streams and reveals further subnetworks within the dorsal stream. The hierarchical organization of the entire visual cortex can be derived from intracortical feedforward and feedback pathways mediated by upper- and lower-layer input neurons, respectively. This study expands our knowledge of the brain-wide inputs regulating visual areas and demonstrates that our improved rabies virus tracing strategy can be used to scale up the effort in dissecting connectivity of genetically defined cell populations in the whole mouse brain.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Sina Tafazoli ◽  
Houman Safaai ◽  
Gioia De Franceschi ◽  
Federica Bianca Rosselli ◽  
Walter Vanzella ◽  
...  

Rodents are emerging as increasingly popular models of visual functions. Yet, evidence that rodent visual cortex is capable of advanced visual processing, such as object recognition, is limited. Here we investigate how neurons located along the progression of extrastriate areas that, in the rat brain, run laterally to primary visual cortex, encode object information. We found a progressive functional specialization of neural responses along these areas, with: (1) a sharp reduction of the amount of low-level, energy-related visual information encoded by neuronal firing; and (2) a substantial increase in the ability of both single neurons and neuronal populations to support discrimination of visual objects under identity-preserving transformations (e.g., position and size changes). These findings strongly argue for the existence of a rat object-processing pathway, and point to the rodents as promising models to dissect the neuronal circuitry underlying transformation-tolerant recognition of visual objects.


2018 ◽  
Author(s):  
Jack Waters ◽  
Eric Lee ◽  
Nathalie Gaudreault ◽  
Fiona Griffin ◽  
Jerome Lecoq ◽  
...  

ABSTRACTVisual cortex is organized into discrete sub-regions or areas that are arranged into a hierarchy and serve different functions in the processing of visual information. In our previous work, we noted that retinotopic maps of cortical visual areas differed between mice, but did not quantify these differences or determine the relative contributions of biological variation and measurement noise. Here we quantify the biological variation in the size, shape and locations of 11 visual areas in the mouse. We find that there is substantial biological variation in the sizes of visual areas, with some visual areas varying in size by two-fold across the population of mice.


Author(s):  
Sunyoung Park ◽  
John T. Serences

Top-down spatial attention enhances cortical representations of behaviorally relevant visual information and increases the precision of perceptual reports. However, little is known about the relative precision of top-down attentional modulations in different visual areas, especially compared to the highly precise stimulus-driven responses that are observed in early visual cortex. For example, the precision of attentional modulations in early visual areas may be limited by the relatively coarse spatial selectivity and the anatomical connectivity of the areas in prefrontal cortex that generate and relay the top-down signals. Here, we used fMRI and human participants to assess the precision of bottom-up spatial representations evoked by high contrast stimuli across the visual hierarchy. Then, we examined the relative precision of top-down attentional modulations in the absence of spatially-specific bottom-up drive. While V1 showed the largest relative difference between the precision of top-down attentional modulations and the precision of bottom-up modulations, mid-level areas such as V4 showed relatively smaller differences between the precision of top-down and bottom-up modulations. Overall, this interaction between visual areas (e.g. V1 vs V4) and the relative precision of top-down and bottom-up modulations suggests that the precision of top-down attentional modulations is limited by the representational fidelity of areas that generate and relay top-down feedback signals.


Author(s):  
Xiaolian Li ◽  
Qi Zhu ◽  
Wim Vanduffel

AbstractThe visuotopic organization of dorsal visual cortex rostral to area V2 in primates has been a longstanding source of controversy. Using sub-millimeter phase-encoded retinotopic fMRI mapping, we recently provided evidence for a surprisingly similar visuotopic organization in dorsal visual cortex of macaques compared to previously published maps in New world monkeys (Zhu and Vanduffel, Proc Natl Acad Sci USA 116:2306–2311, 2019). Although individual quadrant representations could be robustly delineated in that study, their grouping into hemifield representations remains a major challenge. Here, we combined in-vivo high-resolution myelin density mapping based on MR imaging (400 µm isotropic resolution) with fine-grained retinotopic fMRI to quantitatively compare myelin densities across retinotopically defined visual areas in macaques. Complementing previously documented differences in populational receptive-field (pRF) size and visual field signs, myelin densities of both quadrants of the dorsolateral posterior area (DLP) and area V3A are significantly different compared to dorsal and ventral area V3. Moreover, no differences in myelin density were observed between the two matching quadrants belonging to areas DLP, V3A, V1, V2 and V4, respectively. This was not the case, however, for the dorsal and ventral quadrants of area V3, which showed significant differences in MR-defined myelin densities, corroborating evidence of previous myelin staining studies. Interestingly, the pRF sizes and visual field signs of both quadrant representations in V3 are not different. Although myelin density correlates with curvature and anticorrelates with cortical thickness when measured across the entire cortex, exactly as in humans, the myelin density results in the visual areas cannot be explained by variability in cortical thickness and curvature between these areas. The present myelin density results largely support our previous model to group the two quadrants of DLP and V3A, rather than grouping DLP- with V3v into a single area VLP, or V3d with V3A+ into DM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Domenica Veniero ◽  
Joachim Gross ◽  
Stephanie Morand ◽  
Felix Duecker ◽  
Alexander T. Sack ◽  
...  

AbstractVoluntary allocation of visual attention is controlled by top-down signals generated within the Frontal Eye Fields (FEFs) that can change the excitability of lower-level visual areas. However, the mechanism through which this control is achieved remains elusive. Here, we emulated the generation of an attentional signal using single-pulse transcranial magnetic stimulation to activate the FEFs and tracked its consequences over the visual cortex. First, we documented changes to brain oscillations using electroencephalography and found evidence for a phase reset over occipital sites at beta frequency. We then probed for perceptual consequences of this top-down triggered phase reset and assessed its anatomical specificity. We show that FEF activation leads to cyclic modulation of visual perception and extrastriate but not primary visual cortex excitability, again at beta frequency. We conclude that top-down signals originating in FEF causally shape visual cortex activity and perception through mechanisms of oscillatory realignment.


2008 ◽  
Vol 20 (7) ◽  
pp. 1847-1872 ◽  
Author(s):  
Mark C. W. van Rossum ◽  
Matthijs A. A. van der Meer ◽  
Dengke Xiao ◽  
Mike W. Oram

Neurons in the visual cortex receive a large amount of input from recurrent connections, yet the functional role of these connections remains unclear. Here we explore networks with strong recurrence in a computational model and show that short-term depression of the synapses in the recurrent loops implements an adaptive filter. This allows the visual system to respond reliably to deteriorated stimuli yet quickly to high-quality stimuli. For low-contrast stimuli, the model predicts long response latencies, whereas latencies are short for high-contrast stimuli. This is consistent with physiological data showing that in higher visual areas, latencies can increase more than 100 ms at low contrast compared to high contrast. Moreover, when presented with briefly flashed stimuli, the model predicts stereotypical responses that outlast the stimulus, again consistent with physiological findings. The adaptive properties of the model suggest that the abundant recurrent connections found in visual cortex serve to adapt the network's time constant in accordance with the stimulus and normalizes neuronal signals such that processing is as fast as possible while maintaining reliability.


2015 ◽  
Vol 27 (7) ◽  
pp. 1344-1359 ◽  
Author(s):  
Sara Jahfari ◽  
Lourens Waldorp ◽  
K. Richard Ridderinkhof ◽  
H. Steven Scholte

Action selection often requires the transformation of visual information into motor plans. Preventing premature responses may entail the suppression of visual input and/or of prepared muscle activity. This study examined how the quality of visual information affects frontobasal ganglia (BG) routes associated with response selection and inhibition. Human fMRI data were collected from a stop task with visually degraded or intact face stimuli. During go trials, degraded spatial frequency information reduced the speed of information accumulation and response cautiousness. Effective connectivity analysis of the fMRI data showed action selection to emerge through the classic direct and indirect BG pathways, with inputs deriving form both prefrontal and visual regions. When stimuli were degraded, visual and prefrontal regions processing the stimulus information increased connectivity strengths toward BG, whereas regions evaluating visual scene content or response strategies reduced connectivity toward BG. Response inhibition during stop trials recruited the indirect and hyperdirect BG pathways, with input from visual and prefrontal regions. Importantly, when stimuli were nondegraded and processed fast, the optimal stop model contained additional connections from prefrontal to visual cortex. Individual differences analysis revealed that stronger prefrontal-to-visual connectivity covaried with faster inhibition times. Therefore, prefrontal-to-visual cortex connections appear to suppress the fast flow of visual input for the go task, such that the inhibition process can finish before the selection process. These results indicate response selection and inhibition within the BG to emerge through the interplay of top–down adjustments from prefrontal and bottom–up input from sensory cortex.


Sign in / Sign up

Export Citation Format

Share Document