Comparative genomic analysis of two Burkholderia glumae strains from different geographic origins reveals a high degree of plasticity in genome structure associated with genomic islands

2013 ◽  
Vol 288 (3-4) ◽  
pp. 195-203 ◽  
Author(s):  
Felix Francis ◽  
Joohyun Kim ◽  
Thiru Ramaraj ◽  
Andrew Farmer ◽  
Milton C. Rush ◽  
...  
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9171 ◽  
Author(s):  
Danial Nasr Azadani ◽  
Daiyuan Zhang ◽  
J. Robert Hatherill ◽  
David Silva ◽  
Jeffrey W. Turner

Enterococcus is a genus of Gram-positive bacteria that are commensal to the gastrointestinal tracts of humans but some species have been increasingly implicated as agents of nosocomial infections. The increase in infections and the spread of antibiotic-resistant strains have contributed to renewed interest in the discovery of Enterococcus phages. The aims of this study were (1) the isolation, characterization, and genome sequencing of a phage capable of infecting an antibiotic-resistant E. faecalis strain, and (2) the comparative genomic analysis of publicly-available Enterococcus phages. For this purpose, multiple phages were isolated from wastewater treatment plant (WWTP) influent using a high-level aminoglycoside-resistant (HLAR) E. faecalis strain as the host. One phage, phiNASRA1, demonstrated a high lytic efficiency (∼97.52%). Transmission electron microscopy (TEM) and whole-genome sequencing (WGS) showed that phiNASRA1 belongs to the Siphoviridae family of double-stranded DNA viruses. The phage was approximately 250 nm in length and its complete genome (40,139 bp, 34.7% GC) contained 62 open reading frames (ORFs). Phylogenetic comparisons of phiNASRA1 and 31 publicly-available Enterococcus phages, based on the large subunit terminase and portal proteins, grouped phage by provenance, size, and GC content. In particular, both phylogenies grouped phages larger than 100 kbp into distinct clades. A phylogeny based on a pangenome analysis of the same 32 phages also grouped phages by provenance, size, and GC content although agreement between the two single-locus phylogenies was higher. Per the pangenome phylogeny, phiNASRA1 was most closely related to phage LY0322 that was similar in size, GC content, and number of ORFs (40,139 and 40,934 bp, 34.77 and 34.80%, and 60 and 64 ORFs, respectively). The pangenome analysis did illustrate the high degree of sequence diversity and genome plasticity as no coding sequence was homologous across all 32 phages, and even ‘conserved’ structural proteins (e.g., the large subunit terminase and portal proteins) were homologous in no more than half of the 32 phage genomes. These findings contribute to a growing body of literature devoted to understanding phage biology and diversity. We propose that this high degree of diversity limited the value of the single-locus and pangenome phylogenies. By contrast, the high degree of homology between phages larger than 100 kbp suggests that pangenome analyses of more similar phages is a viable method for assessing subclade diversity. Future work is focused on validating phiNASRA1 as a potential therapeutic agent to eradicate antibiotic-resistant E. faecalis infections in an animal model.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Jianchao Ying ◽  
Jun Ye ◽  
Teng Xu ◽  
Qian Wang ◽  
Qiyu Bao ◽  
...  

Rhodococcus equi, a member of the Rhodococcus genus, is a gram-positive pathogenic bacterium. Rhodococcus possesses an open pan-genome that constitutes the basis of its high genomic diversity and allows for adaptation to specific niche conditions and the changing host environments. Our analysis further showed that the core genome of R. equi contributes to the pathogenicity and niche adaptation of R. equi. Comparative genomic analysis revealed that the genomes of R. equi shared identical collinearity relationship, and heterogeneity was mainly acquired by means of genomic islands and prophages. Moreover, genomic islands in R. equi were always involved in virulence, resistance, or niche adaptation and possibly working with prophages to cause the majority of genome expansion. These findings provide an insight into the genomic diversity, evolution, and structural variation of R. equi and a valuable resource for functional genomic studies.


2011 ◽  
Vol 11 (1) ◽  
pp. 135 ◽  
Author(s):  
Pengcheng Du ◽  
Yinxue Yang ◽  
Haiying Wang ◽  
Di Liu ◽  
George F Gao ◽  
...  

2010 ◽  
pp. no-no ◽  
Author(s):  
Elisa Taviani ◽  
Christopher J. Grim ◽  
Jinna Choi ◽  
Jongsik Chun ◽  
Bradd Haley ◽  
...  

2021 ◽  
pp. 100015
Author(s):  
Eamon O. Murchu ◽  
Sinead O'Neill ◽  
Paula Byrne ◽  
Cillian De Gascun ◽  
Michelle O'Neill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document