scholarly journals Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy

2016 ◽  
Vol 135 (9) ◽  
pp. 1029-1040 ◽  
Author(s):  
Jacqueline N. Robinson-Hamm ◽  
Charles A. Gersbach
Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 648
Author(s):  
Andrea L. Reid ◽  
Matthew S. Alexander

Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a pathogenic disruption of the DYSTROPHIN gene that results in non-functional dystrophin protein. DMD patients experience loss of ambulation, cardiac arrhythmia, metabolic syndrome, and respiratory failure. At the molecular level, the lack of dystrophin in the muscle results in myofiber death, fibrotic infiltration, and mitochondrial dysfunction. There is no cure for DMD, although dystrophin-replacement gene therapies and exon-skipping approaches are being pursued in clinical trials. Mitochondrial dysfunction is one of the first cellular changes seen in DMD myofibers, occurring prior to muscle disease onset and progresses with disease severity. This is seen by reduced mitochondrial function, abnormal mitochondrial morphology and impaired mitophagy (degradation of damaged mitochondria). Dysfunctional mitochondria release high levels of reactive oxygen species (ROS), which can activate pro-inflammatory pathways such as IL-1β and IL-6. Impaired mitophagy in DMD results in increased inflammation and further aggravates disease pathology, evidenced by increased muscle damage and increased fibrosis. This review will focus on the critical interplay between mitophagy and inflammation in Duchenne muscular dystrophy as a pathological mechanism, as well as describe both candidate and established therapeutic targets that regulate these pathways.


2011 ◽  
Vol 179 (1) ◽  
pp. 12-22 ◽  
Author(s):  
Eric P. Hoffman ◽  
Abby Bronson ◽  
Arthur A. Levin ◽  
Shin'ichi Takeda ◽  
Toshifumi Yokota ◽  
...  

2015 ◽  
Vol 23 (3) ◽  
pp. 523-532 ◽  
Author(s):  
David G Ousterout ◽  
Ami M Kabadi ◽  
Pratiksha I Thakore ◽  
Pablo Perez-Pinera ◽  
Matthew T Brown ◽  
...  

Neurology ◽  
2018 ◽  
Vol 90 (24) ◽  
pp. e2146-e2154 ◽  
Author(s):  
Jay S. Charleston ◽  
Frederick J. Schnell ◽  
Johannes Dworzak ◽  
Cas Donoghue ◽  
Sarah Lewis ◽  
...  

ObjectiveTo describe the quantification of novel dystrophin production in patients with Duchenne muscular dystrophy (DMD) after long-term treatment with eteplirsen.MethodsClinical study 202 was an observational, open-label extension of the randomized, controlled study 201 assessing the safety and efficacy of eteplirsen in patients with DMD with a confirmed mutation in the DMD gene amenable to correction by skipping of exon 51. Patients received once-weekly IV doses of eteplirsen 30 or 50 mg/kg. Upper extremity muscle biopsy samples were collected at combined study week 180, blinded, and assessed for dystrophin-related content by Western blot, Bioquant software measurement of dystrophin-associated immunofluorescence intensity, and percent dystrophin-positive fibers (PDPF). Results were contrasted with matched untreated biopsies from patients with DMD. Reverse transcription PCR followed by Sanger sequencing of newly formed slice junctions was used to confirm the mechanism of action of eteplirsen.ResultsReverse transcription PCR analysis and sequencing of the newly formed splice junction confirmed that 100% of treated patients displayed the expected skipped exon 51 sequence. In treated patients vs untreated controls, Western blot analysis of dystrophin content demonstrated an 11.6-fold increase (p = 0.007), and PDPF analysis demonstrated a 7.4-fold increase (p < 0.001). The PDPF findings were confirmed in a re-examination of the sample (15.5-fold increase, p < 0.001). Dystrophin immunofluorescence intensity was 2.4-fold greater in treated patients than in untreated controls (p < 0.001).ConclusionTaken together, the 4 assays, each based on unique evaluation mechanisms, provided evidence of eteplirsen muscle cell penetration, exon skipping, and induction of novel dystrophin expression.Classification of evidenceThis study provides Class II evidence of the muscle cell penetration, exon skipping, and induction of novel dystrophin expression by eteplirsen, as confirmed by 4 assays.


2012 ◽  
Vol 23 (2) ◽  
pp. 202-209 ◽  
Author(s):  
Jin-Hong Shin ◽  
Yongping Yue ◽  
Arun Srivastava ◽  
Bruce Smith ◽  
Yi Lai ◽  
...  

2013 ◽  
Vol 23 (9-10) ◽  
pp. 842
Author(s):  
Y. Cherel ◽  
C. Le Guiner ◽  
L. Guigand ◽  
M. Dutilleul ◽  
T. Larcher ◽  
...  

2013 ◽  
Vol 21 (9) ◽  
pp. 1718-1726 ◽  
Author(s):  
David G Ousterout ◽  
Pablo Perez-Pinera ◽  
Pratiksha I Thakore ◽  
Ami M Kabadi ◽  
Matthew T Brown ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document