zinc finger nucleases
Recently Published Documents


TOTAL DOCUMENTS

489
(FIVE YEARS 76)

H-INDEX

73
(FIVE YEARS 8)

Author(s):  
Akshara K. Raut ◽  
Tripti Waghmare

This essay is about intrinsic planning parts that can alternate the enlarge of the particle that regulates our herbal cycles, the genome. Since the 1990s, first-class enchantment has been a focal factor of research. It commenced with the genome undertaking and will proceed to be an ambassador for the foreseeable future. The functions are many, and they are anticipated to have a significant speculative effect as properly as extraordinarily extreme hazards. The genome altering development trends have opened up the technique to truly zero in on and exchange genomic progressions in nearly all eukaryotic cells, whether or not they are planned or bacterial nucleases. Genome editing has loosened up our capacity to grant an explanation for the role of inherited qualities in infection with the aid of accelerating the development of increased right smartphone and models of animal of psychotic cycles, and it has begun to exhibit extraordinarily top achievable in a variety of fields, ranging from indispensable look up to utilized biotechnology and biomedical research. The late boom in the development of programmable nucleases, such as zinc-finger nucleases (ZFNs), file activator-like effector nucleases (TALENs), and assembled reliably interspaced quick palindromic repeat (CRISPR)– Cas-related nucleases, has accelerated the transition of fee from idea to medical practice. We observe the purposes of their subordinate reagents as quality-changing units in a range of human illnesses, and anticipated future medicines, which focuses on eukaryotic cells and animal models, in this evaluation of modern-day advances in the three critical genome-modifying propels (ZFNs, TALENs, and CRISPR/Cas9). Finally, we have a framework for clinical primers to use genome adjusting phases for sickness therapy, as nicely as some of the difficulties encountered throughout implementation.


Hematology ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. 600-606
Author(s):  
Arielle L. Langer ◽  
Erica B. Esrick

Abstract After years of reliance on transfusion alone to address anemia and suppress ineffective erythropoiesis in β-thalassemia, many new therapies are now in development. Luspatercept, a transforming growth factor–β inhibitor, has demonstrated efficacy in reducing ineffective erythropoiesis, improving anemia, and possibly reducing iron loading. However, many patients do not respond to luspatercept, so additional therapeutics are needed. Several medications in development aim to induce hemoglobin F (HbF): sirolimus, benserazide, and IMR-687 (a phosphodiesterase 9 inhibitor). Another group of agents seeks to ameliorate ineffective erythropoiesis and improve anemia by targeting abnormal iron metabolism in thalassemia: apotransferrin, VIT-2763 (a ferroportin inhibitor), PTG-300 (a hepcidin mimetic), and an erythroferrone antibody in early development. Mitapivat, a pyruvate kinase activator, represents a unique mechanism to mitigate ineffective erythropoiesis. Genetically modified autologous hematopoietic stem cell transplantation offers the potential for lifelong transfusion independence. Through a gene addition approach, lentiviral vectors have been used to introduce a β-globin gene into autologous hematopoietic stem cells. One such product, betibeglogene autotemcel (beti-cel), has reached phase 3 trials with promising results. In addition, 2 gene editing techniques (CRISPR-Cas9 and zinc-finger nucleases) are under investigation as a means to silence BCL11A to induce HbF with agents designated CTX001 and ST-400, respectively. Results from the many clinical trials for these agents will yield results in the next few years, which may end the era of relying on transfusion alone as the mainstay of thalassemia therapy.


Author(s):  
Wilfried A Kues ◽  
Dharmendra Kumar ◽  
Naresh L Selokar ◽  
Thirumala Rao Talluri

: Precise and site specific genome editing through application of emerging and modern gene engineering techniques, namely zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) have swiftly progressed the application and use of the stem cell technology in the sphere of in-vitro disease modelling and regenerative medicine. Genome editing tools facilitate the manipulating of any gene in various types of cells with target specific nucleases. These tools aid in elucidating the genetics and etiology behind different diseases and have immense promise as novel therapeutics for correcting the genetic mutations, make alterations and cure diseases permanently that are not responding and resistant to traditional therapies. These genome engineering tools have evolved in the field of biomedical research and have also shown to have a significant improvement in clinical trials. However, their widespread use in research revealed potential safety issues, which need to be addressed before implementing such techniques in clinical purposes. Significant and valiant attempts are being made in order to surpass those hurdles. The current review outlines the advancements of several genome engineering tools and describes suitable strategies for their application towards regenerative medicine.


2021 ◽  
Vol 14 (11) ◽  
pp. 1171
Author(s):  
Sahar Serajian ◽  
Ehsan Ahmadpour ◽  
Sonia M. Rodrigues Oliveira ◽  
Maria de Lourdes Pereira ◽  
Siamak Heidarzadeh

Through the years, many promising tools for gene editing have been developed including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR-associated protein 9 (Cas9), and homing endonucleases (HEs). These novel technologies are now leading new scientific advancements and practical applications at an inimitable speed. While most work has been performed in eukaryotes, CRISPR systems also enable tools to understand and engineer bacteria. The increase in the number of multi-drug resistant strains highlights a necessity for more innovative approaches to the diagnosis and treatment of infections. CRISPR has given scientists a glimmer of hope in this area that can provide a novel tool to fight against antimicrobial resistance. This system can provide useful information about the functions of genes and aid us to find potential targets for antimicrobials. This paper discusses the emerging use of CRISPR-Cas systems in the fields of clinical microbiology and infectious diseases with a particular emphasis on future prospects.


2021 ◽  
Vol 7 (2) ◽  
pp. 122-129

The ability to engineer genomes presents a significant opportunity for applied biology research. In 2050, the population of this world is expected to reach 9.6 billion residents; rising food with better quality is the most promising approach to food security. Compared to earlier methodologies including Zinc Finger Nucleases (ZFNs) plus Transcription Activator-Like Effector Nucleases (TALENs), which were expensive as well as time-consuming, innovation in Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and related CRISPR (Cas) protein classifications allowed selective editing of genes for the enhancement of food. The basic mechanism of CRISPR Cas9 process and its applications on genome editing has been summarized in this manuscript. The method relies on Sequence-Specific Nucleases (SSNs) to create Double Stranded Breaks (DSB) of DNA at the locus of genome defined by user, mended by using one of two DNA mending ways: Non-Homologous End Joining (NHEJ) or Homology Directed Repair (HDR). Cas9, an RNA-guided endonuclease, was used to produce stable knock-in and knock-out mutants. The focus of this effort is to explore the CRISPR Cas9 genome editing to manage gene expression and improve future editing success. This adaptable technique can be consumed for a wide range of applications of genome editing requiring high precision. Advances in this technology have sparked renewed interest in the possibilities for editing genome in plants.


2021 ◽  
Vol 43 (3) ◽  
pp. 1950-1976
Author(s):  
Adnan Rasheed ◽  
Rafaqat Ali Gill ◽  
Muhammad Umair Hassan ◽  
Athar Mahmood ◽  
Sameer Qari ◽  
...  

Genome editing (GE) has revolutionized the biological sciences by creating a novel approach for manipulating the genomes of living organisms. Many tools have been developed in recent years to enable the editing of complex genomes. Therefore, a reliable and rapid approach for increasing yield and tolerance to various environmental stresses is necessary to sustain agricultural crop production for global food security. This critical review elaborates the GE tools used for crop improvement. These tools include mega-nucleases (MNs), such as zinc-finger nucleases (ZFNs), and transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Specifically, this review addresses the latest advancements in the role of CRISPR/Cas9 for genome manipulation for major crop improvement, including yield and quality development of biotic stress- and abiotic stress-tolerant crops. Implementation of this technique will lead to the production of non-transgene crops with preferred characteristics that can result in enhanced yield capacity under various environmental stresses. The CRISPR/Cas9 technique can be combined with current and potential breeding methods (e.g., speed breeding and omics-assisted breeding) to enhance agricultural productivity to ensure food security. We have also discussed the challenges and limitations of CRISPR/Cas9. This information will be useful to plant breeders and researchers in the thorough investigation of the use of CRISPR/Cas9 to boost crops by targeting the gene of interest.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 350-350
Author(s):  
Hyun Hyung An ◽  
Jean Ann Maguire ◽  
Alyssa Gagne ◽  
Paul Gadue ◽  
Deborah L French ◽  
...  

Abstract Background: Despite transfusion of Rh matched red cells for patients with sickle cell disease, Rh alloimmunization remains a persistent challenge. Rh specificities can be complex, resulting from RH genetic diversity found in patients and donors. Antibody identification is hampered by the lack of appropriate reagent red cells, especially those that can identify antibodies against high prevalence or low prevalence Rh antigens. We used human induced pluripotent stem cells (iPSCs) with the goal of producing renewable red cell reagents to both screen for Rh alloimmunization and to aid complex antibody identification. Methods: We generated a panel of iPSCs that include Rh null, D--, lack the high prevalence antigens hr S or hr B, or express uncommon Rh antigens such as V, VS, Go a, or DAK. For the Rh null line, we used CRISPR/Cas9 genetic engineering to disrupt RHCE via a large deletion in a D- iPSC. For D--, RHD was inserted into the AAVS1 safe harbor locus of an Rh null iPSC line using zinc finger nucleases resulting in a line that constitutively expresses RhD but no RhCE. iPSCs with uncommon variants were reprogrammed from RH genotyped donors or engineered similar to the generation of the D-- line. Hematopoietic differentiation by embryoid body formation was used to generate hematopoietic progenitors that were subsequently cultured towards the erythroid lineage. Mature iRBCs were ficin treated and tested with patient plasma with previously identified Rh antibodies using gel agglutination assays. Results: Rh null iPSC-derived RBCs (iRBCs) showed complete absence of cell surface Rh protein by flow cytometry, while D-- iRBCs showed Rh protein expression levels comparable to D-ce+ iRBCs using an anti-D/CE antibody. We assessed RBC agglutination of Rh null, D--, hr S-, hr B-, VVS+, Go a+, and DAK+ iRBCs using standard Rh typing reagents (Ortho). The reprogrammed uncommon donor iRBCs agglutinated with monoclonal anti-Rh antibodies as predicted by RH genotype, while the Rh null iRBCs showed no agglutination with all 5 common Rh antibodies and D-- iRBCs showed agglutination with anti-D reagents only. Rh null iRBCs showed no agglutination against patient plasma containing anti-D, while D-- iRBCs agglutinated. While D- RHCE*ce homozygous iRBCs showed strong agglutination against patient plasma containing anti-hr S, Rh null, D--, and hr S- iRBCs did not agglutinate. No iRBCs showed agglutination by plasma containing anti-V/VS while VVS+ iRBCs showed strong agglutination. Similarly, no iRBCs showed agglutination by plasma containing anti-Go a while Go a+ iRBCs showed strong agglutination. Detection of most antibodies against Rhce on iRBCs was enhanced by ficin treatment whereas antibodies with D specificity did not require ficin treated cells for detection. Conclusion: We suggest that genetically engineered iPSCs expressing uncommon Rh antigen phenotypes that are difficult or impossible to obtain from red cell donors can expedite antibody identification. Rh null and D-- iRBCs could be useful to discriminate antibodies against RhD versus RhCE. Customized iPSCs that lack high prevalence or express low prevalence Rh antigens could potentially standardize antibody evaluation in patients with complex Rh specificities. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 16 (11) ◽  
pp. 155-163
Author(s):  
Alsubki Roua

The global health system is under a constant threat from microbial outbreaks. The innovation in genetic engineering has created an existential threat to national, regional and international security. This threat, that can edit microbial or human genomes, requires global attention. In the current review, a comprehensive literature search was conducted using PubMed, SCOPUS and Google Scholar to identify literature discussing modern biotechnology tools as well as relevance to biosafety in the Middle east region. This review was undertaken to provide an overview of biological threats due to advancements in genetic engineering, making it possible to insert or delete specific genes to increase the virulence of particular microbes. These pathogens or other toxic factors can be multiplied by technology, creating new biological weapons. Genome editing technologies including meganucleases (MNs), zinc finger nucleases (ZFNs), transcription activator-like effector (TALE)-nucleases (TALENs) and recently discovered clustered regularly interspaced short palindromic repeats (CRISPR/Cas) induce a double strand break at specific DNA target site. Genome editing technologies lead to an irreversible and permanent alteration of the genetic code and therefore, can inevitably result in security risks. Vulnerabilities in Middle Eastern laboratories raise the prospect of high levels of pathogenic microbes potentially creating a weakness in the diagnosis and monitoring of epidemics. Furthermore, the lack of regional legislation to regulate biosafety and biosecurity may lead to biological threat at the regional level.


2021 ◽  
Vol 22 (20) ◽  
pp. 10985
Author(s):  
Juliët Schreurs ◽  
Claudia Sacchetto ◽  
Robin M. W. Colpaert ◽  
Libero Vitiello ◽  
Alessandra Rampazzo ◽  
...  

In the past two decades, genome editing has proven its value as a powerful tool for modeling or even treating numerous diseases. After the development of protein-guided systems such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), which for the first time made DNA editing an actual possibility, the advent of RNA-guided techniques has brought about an epochal change. Based on a bacterial anti-phage system, the CRISPR/Cas9 approach has provided a flexible and adaptable DNA-editing system that has been able to overcome several limitations associated with earlier methods, rapidly becoming the most common tool for both disease modeling and therapeutic studies. More recently, two novel CRISPR/Cas9-derived tools, namely base editing and prime editing, have further widened the range and accuracy of achievable genomic modifications. This review aims to provide an overview of the most recent developments in the genome-editing field and their applications in biomedical research, with a particular focus on models for the study and treatment of cardiac diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohamed Abdelrahman ◽  
Zheng Wei ◽  
Jai S. Rohila ◽  
Kaijun Zhao

Multiplex genome-editing (MGE) technologies are recently developed versatile bioengineering tools for modifying two or more specific DNA loci in a genome with high precision. These genome-editing tools have greatly increased the feasibility of introducing desired changes at multiple nucleotide levels into a target genome. In particular, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) [CRISPR/Cas] system-based MGE tools allow the simultaneous generation of direct mutations precisely at multiple loci in a gene or multiple genes. MGE is enhancing the field of plant molecular biology and providing capabilities for revolutionizing modern crop-breeding methods as it was virtually impossible to edit genomes so precisely at the single base-pair level with prior genome-editing tools, such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Recently, researchers have not only started using MGE tools to advance genome-editing applications in certain plant science fields but also have attempted to decipher and answer basic questions related to plant biology. In this review, we discuss the current progress that has been made toward the development and utilization of MGE tools with an emphasis on the improvements in plant biology after the discovery of CRISPR/Cas9. Furthermore, the most recent advancements involving CRISPR/Cas applications for editing multiple loci or genes are described. Finally, insights into the strengths and importance of MGE technology in advancing crop-improvement programs are presented.


Sign in / Sign up

Export Citation Format

Share Document