Viability property for a backward stochastic differential equation and applications to partial differential equations

2000 ◽  
Vol 116 (4) ◽  
pp. 485-504 ◽  
Author(s):  
Rainer Buckdahn ◽  
Marc Quincampoix ◽  
Aurel Răşcanu
1979 ◽  
Vol 22 (2) ◽  
pp. 129-138 ◽  
Author(s):  
Donald A. Dawson

The purpose of this article is to give an introduction to the study of a class of stochastic partial differential equations and to give a brief review of some of the recent developments in this field. This study has evolved naturally out of the theory of stochastic differential equations initiated in a pioneering paper of K. Itô [13]. In order to set this review in its appropriate setting we begin by considering a simple scalar stochastic differential equation.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
I. V. Melnikova ◽  
V. S. Parfenenkova

The aim of the paper is to introduce a generalization of the Feynman-Kac theorem in Hilbert spaces. Connection between solutions to the abstract stochastic differential equation and solutions to the deterministic partial differential (with derivatives in Hilbert spaces) equation for the probability characteristic is proved. Interpretation of objects in the equations is given.


2019 ◽  
Vol 16 ◽  
pp. 8226-8233
Author(s):  
Mahmoud Mohammed Mostafa El-Borai ◽  
A. Tarek S.A.

In this paper, we shall discuss the uniqueness ”pathwise uniqueness” of the solutions of stochastic partial differential equations (SPDEs) with non-local initial condition,We shall use the Yamada-Watanabe condition for ”pathwise uniqueness” of the solutions of the stochastic differential equation; this condition is weaker than the usual Lipschitz condition. The proof is based on Bihari’sinequality.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
P. G. L. Leach ◽  
K. S. Govinder ◽  
K. Andriopoulos

Hidden symmetries entered the literature in the late Eighties when it was observed that there could be gain of Lie point symmetry in the reduction of order of an ordinary differential equation. Subsequently the reverse process was also observed. Such symmetries were termed “hidden”. In each case the source of the “new” symmetry was a contact symmetry or a nonlocal symmetry, that is, a symmetry with one or more of the coefficient functions containing an integral. Recent work by Abraham-Shrauner and Govinder (2006) on the reduction of partial differential equations demonstrates that it is possible for these “hidden” symmetries to have a point origin. In this paper we show that the same phenomenon can be observed in the reduction of ordinary differential equations and in a sense loosen the interpretation of hidden symmetries.


2021 ◽  
Vol 41 (5) ◽  
pp. 685-699
Author(s):  
Ivan Tsyfra

We study the relationship between the solutions of stationary integrable partial and ordinary differential equations and coefficients of the second-order ordinary differential equations invariant with respect to one-parameter Lie group. The classical symmetry method is applied. We prove that if the coefficients of ordinary differential equation satisfy the stationary integrable partial differential equation with two independent variables then the ordinary differential equation is integrable by quadratures. If special solutions of integrable partial differential equations are chosen then the coefficients satisfy the stationary KdV equations. It was shown that the Ermakov equation belong to a class of these equations. In the framework of the approach we obtained the similar results for generalized Riccati equations. By using operator of invariant differentiation we describe a class of higher order ordinary differential equations for which the group-theoretical method enables us to reduce the order of ordinary differential equation.


Author(s):  
Michael Doebeli

This chapter discusses partial differential equation models. Partial differential equations can describe the dynamics of phenotype distributions of polymorphic populations, and they allow for a mathematically concise formulation from which some analytical insights can be obtained. It has been argued that because partial differential equations can describe polymorphic populations, results from such models are fundamentally different from those obtained using adaptive dynamics. In partial differential equation models, diversification manifests itself as pattern formation in phenotype distribution. More precisely, diversification occurs when phenotype distributions become multimodal, with the different modes corresponding to phenotypic clusters, or to species in sexual models. Such pattern formation occurs in partial differential equation models for competitive as well as for predator–prey interactions.


1927 ◽  
Vol 46 ◽  
pp. 126-135 ◽  
Author(s):  
E. T. Copson

A partial differential equation of physics may be defined as a linear second-order equation which is derivable from a Hamiltonian Principle by means of the methods of the Calculus of Variations. This principle states that the actual course of events in a physical problem is such that it gives to a certain integral a stationary value.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1853
Author(s):  
Christiane Quesne

We show that the method developed by Gangopadhyaya, Mallow, and their coworkers to deal with (translational) shape invariant potentials in supersymmetric quantum mechanics and consisting in replacing the shape invariance condition, which is a difference-differential equation, which, by an infinite set of partial differential equations, can be generalized to deformed shape invariant potentials in deformed supersymmetric quantum mechanics. The extended method is illustrated by several examples, corresponding both to ℏ-independent superpotentials and to a superpotential explicitly depending on ℏ.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1153
Author(s):  
Na Zhang ◽  
Guangyan Jia

In this paper, we introduce the Lie-point symmetry method into backward stochastic differential equation and forward–backward stochastic differential equations, and get the corresponding deterministic equations.


2020 ◽  
Vol 07 (02) ◽  
pp. 2050012
Author(s):  
Riu Naito ◽  
Toshihiro Yamada

This paper gives an acceleration scheme for deep backward stochastic differential equation (BSDE) solver, a deep learning method for solving BSDEs introduced in Weinan et al. [Weinan, E, J Han and A Jentzen (2017). Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, Communications in Mathematics and Statistics, 5(4), 349–380]. The solutions of nonlinear partial differential equations are quickly estimated using technique of weak approximation even if the dimension is high. In particular, the loss function and the relative error for the target solution become sufficiently small through a smaller number of iteration steps in the new deep BSDE solver.


Sign in / Sign up

Export Citation Format

Share Document