An immunohistochemical and in situ hybridisation study of the postnatal development of uncoupling protein-1 and uncoupling protein-1 mRNA in lamb perirenal adipose tissue

1998 ◽  
Vol 294 (3) ◽  
pp. 461-466 ◽  
Author(s):  
David Finn ◽  
M. A. Lomax ◽  
Paul Trayhurn
1999 ◽  
Vol 1999 ◽  
pp. 164-164
Author(s):  
D.S. Finn ◽  
P. Trayhurn ◽  
J. Struthers ◽  
M.A. Lomax

A crucial factor in the prevention of hypothermia in the neonatal lamb is the functional activitation of a mitochondrial uncoupling protein (UCP1) in brown adipose tissue. UCP1 disappears from lamb brown fat over the first 14 days of life (Finn et al., 1998), but it is not known whether this process can be modulated in lambs by the release of catecholamines which have been established in rodents as a mediator of the response to cold stress. This study examines the effect of administering a β-adrenoceptor agonist on the disappearance of UCP1 and UCP1 mRNA during early neonatal life, using immunohistochemistry and in situ hybridization.


2004 ◽  
Vol 18 (9) ◽  
pp. 2302-2311 ◽  
Author(s):  
Michael A. Nolan ◽  
Maria A. Sikorski ◽  
G. Stanley McKnight

Abstract Mice lacking the RIIβ regulatory subunit of protein kinase A exhibit a 50% reduction in white adipose tissue stores compared with wild-type littermates and are resistant to diet-induced obesity. RIIβ−/− mice also have an increase in resting oxygen consumption along with a 4-fold increase in the brown adipose-specific mitochondrial uncoupling protein 1 (UCP1). In this study, we examined the basis for UCP1 induction and tested the hypothesis that the induced levels of UCP1 in RIIβ null mice are essential for the lean phenotype. The induction of UCP1 occurred at the protein but not the mRNA level and correlated with an increase in mitochondria in brown adipose tissue. Mice lacking both RIIβ and UCP1 (RIIβ−/−/Ucp1−/−) were created, and the key parameters of metabolism and body composition were studied. We discovered that RIIβ−/− mice exhibit nocturnal hyperactivity in addition to the increased oxygen consumption at rest. Disruption of UCP1 in RIIβ−/− mice reduced basal oxygen consumption but did not prevent the nocturnal hyperactivity. The double knockout animals also retained the lean phenotype of the RIIβ null mice, demonstrating that induction of UCP1 and increased resting oxygen consumption is not the cause of leanness in the RIIβ mutant mice.


Sign in / Sign up

Export Citation Format

Share Document