adaptive thermogenesis
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 82)

H-INDEX

43
(FIVE YEARS 8)

2021 ◽  
Vol 219 (2) ◽  
Author(s):  
Hyung Sik Kim ◽  
Min Young Park ◽  
Nam Joo Yun ◽  
Hye Sun Go ◽  
Mi Young Kim ◽  
...  

Phospholipase D (PLD)2 via its enzymatic activity regulates cell proliferation and migration and thus is implicated in cancer. However, the role of PLD2 in obesity and type 2 diabetes has not previously been investigated. Here, we show that during diet-induced thermogenesis and obesity, levels of PLD2 but not PLD1 in adipose tissue are inversely related with uncoupling protein 1, a key thermogenic protein. We demonstrate that the thermogenic program in adipose tissue is significantly augmented in mice with adipocyte-specific Pld2 deletion or treated with a PLD2-specific inhibitor and that these mice are resistant to high fat diet–induced obesity, glucose intolerance, and insulin resistance. Mechanistically, we show that Pld2 deletion in adipose tissue or PLD2 pharmacoinhibition acts via p62 to improve mitochondrial quality and quantity in adipocytes. Thus, PLD2 inhibition is an attractive therapeutic approach for obesity and type 2 diabetes by resolving defects in diet-induced thermogenesis.


Author(s):  
Xian Chen ◽  
Eliza Bollinger ◽  
Teresa Cunio ◽  
Federico Damilano ◽  
John C. Stansfield ◽  
...  

Mouse models are used to model human diseases and perform pharmacological efficacy testing to advance therapies to humans; most of these studies are conducted in room temperature conditions. At room temperature (22°C), mice are cold stressed and must utilize brown adipose tissue (BAT) to maintain body temperature. This cold stress increases catecholamine tone to maintain adipocyte lipid release via lipolysis, which will fuel adaptive thermogenesis. Maintaining rodents at thermoneutral temperatures (28°C) ameliorates the need for adaptive thermogenesis, thus reducing catecholamine tone and BAT activity. Cardiovascular tone is also determined by catecholamine levels in rodents, as beta adrenergic stimuli are primary drivers of not only lipolytic, but also ionotropic and chronotropic responses. As mice have increased catecholamine tone at room temperature, we investigated how thermoneutral housing conditions would impact cardiometabolic function. Here, we show a rapid and reversible effect of thermoneutrality on both heart rate and blood pressure in chow fed animals, which was blunted in animals fed high fat diet. Animals subjected to transverse aortic constriction displayed compensated hypertrophy at room temperature, while animals displayed less hypertrophy and trends towards worse systolic function at thermoneutrality. Despite these dramatic changes in blood pressure and heart rate at thermoneutral housing conditions, enalapril effectively improved cardiac hypertrophy and gene expression alterations. There were surprisingly few differences in cardiac parameters in high fat fed animals at thermoneutrality. Overall, these data suggest that thermoneutral housing may alter some aspects of cardiac remodeling in preclinical mouse models of heart failure.


Author(s):  
Catarina L. Nunes ◽  
Filipe Jesus ◽  
Ruben Francisco ◽  
Catarina N. Matias ◽  
Moonseong Heo ◽  
...  

2021 ◽  
Author(s):  
Pei-Chi Chan ◽  
Li-Man Hung ◽  
Jiung-Pang Huang ◽  
Yuan-Ji Day ◽  
Chao-Lan Yu ◽  
...  

Chemokine (C-C motif) ligand 5 (CCL5) and CCR5, one of its receptors have been reported to be highly expressed in white adipose tissue (WAT) and are associated with the progression of inflammation and the development of insulin resistance in obese humans and mice. However, the role of CCL5/CCR5 signaling in obesity-associated dysregulation of energy metabolism remains unclear. Here, we demonstrate that global CCL5/CCR5 double knockout (DKO) mice have higher cold stress-induced energy expenditure and thermogenic function in BAT than wild-type (WT) mice. DKO mice have higher cold stress-induced energy expenditure and thermogenic function in BAT than wild-type mice. KEGG pathway analysis indicated that deletion of CCL5/CCR5 further facilitated the cold-induced expression of genes related to oxidative phosphorylation and lipid metabolic pathways. In primary brown adipocytes of DKO mice, the augmentation of CL-316243-stimulated thermogenic and lipolysis responses was reversed by co-treatment with AMPKα1 and α2 siRNA. Overexpression of BAT CCL5/CCR5 genes by local lentivirus injection in WT mice suppressed cold stress-induced lipolytic processes and thermogenic activities. In contrast, knockdown of BAT CCL5/CCR5 signaling further upregulated AMPK phosphorylation as well as thermogenic and lipolysis responses to chronic adrenergic stimuli and subsequently decreased level of body weight gain. Chronic knockdown of BAT CCL5/CCR5 signaling improved HFD-induced insulin resistance in WT mice. It is suggested that obesity-induced augmentation of AT CCL5/CCR5 signaling could, at least in part, suppress energy expenditure and adaptive thermogenesis by inhibiting AMPK-mediated lipolysis and oxidative metabolism in thermogenic AT to exacerbate the development of obesity and insulin resistance.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1573
Author(s):  
Liping Luo ◽  
Lu Wang ◽  
Yan Luo ◽  
Estevan Romero ◽  
Xin Yang ◽  
...  

Glucocorticoids (GCs), a class of corticosteroids produced by the adrenal cortex in response to stress, exert obesity-promoting effects. Although adaptive thermogenesis has been considered an effective approach to counteract obesity, whether GCs play a role in regulating cold stress-induced thermogenesis remains incompletely understood. Here, we show that the circulating levels of stress hormone corticosterone (GC in rodents) were significantly elevated, whereas the levels of adiponectin, an adipokine that was linked to cold-induced adaptive thermogenesis, were decreased 48 h post cold exposure. The administration of a glucocorticoid hydrocortisone downregulated adiponectin protein and mRNA levels in both WAT and white adipocytes, and upregulated thermogenic gene expression in inguinal fat. In contrast, mifepristone, a glucocorticoid receptor antagonist, enhanced adiponectin expression and suppressed energy expenditure in vivo. Mechanistically, hydrocortisone suppressed adiponectin expression by antagonizing PPARγ in differentiated 3T3-L1 adipocytes. Ultimately, adiponectin deficiency restored mifepristone-decreased oxygen consumption and suppressed the expression of thermogenic genes in inguinal fat. Taken together, our study reveals that the GCs/adiponectin axis is a key regulator of beige fat thermogenesis in response to acute cold stress.


2021 ◽  
Vol 118 (40) ◽  
pp. e2109186118
Author(s):  
Jin-Seon Yook ◽  
Mikyoung You ◽  
Jiyoung Kim ◽  
Ashley M. Toney ◽  
Rong Fan ◽  
...  

Iron is an essential biometal, but is toxic if it exists in excess. Therefore, iron content is tightly regulated at cellular and systemic levels to meet metabolic demands but to avoid toxicity. We have recently reported that adaptive thermogenesis, a critical metabolic pathway to maintain whole-body energy homeostasis, is an iron-demanding process for rapid biogenesis of mitochondria. However, little information is available on iron mobilization from storage sites to thermogenic fat. This study aimed to determine the iron-regulatory network that underlies beige adipogenesis. We hypothesized that thermogenic stimulus initiates the signaling interplay between adipocyte iron demands and systemic iron liberation, resulting in iron redistribution into beige fat. To test this hypothesis, we induced reversible activation of beige adipogenesis in C57BL/6 mice by administering a β3-adrenoreceptor agonist CL 316,243 (CL). Our results revealed that CL stimulation induced the iron-regulatory protein–mediated iron import into adipocytes, suppressed hepcidin transcription, and mobilized iron from the spleen. Mechanistically, CL stimulation induced an acute activation of hypoxia-inducible factor 2-α (HIF2-α), erythropoietin production, and splenic erythroid maturation, leading to hepcidin suppression. Disruption of systemic iron homeostasis by pharmacological HIF2-α inhibitor PT2385 or exogenous administration of hepcidin-25 significantly impaired beige fat development. Our findings suggest that securing iron availability via coordinated interplay between renal hypoxia and hepcidin down-regulation is a fundamental mechanism to activate adaptive thermogenesis. It also provides an insight into the effects of adaptive thermogenesis on systemic iron mobilization and redistribution.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Min Li ◽  
Li Li ◽  
Baoguo Li ◽  
Catherine Hambly ◽  
Guanlin Wang ◽  
...  

AbstractGut microbiota deficient mice demonstrate accelerated glucose clearance. However, which tissues are responsible for the upregulated glucose uptake remains unresolved, with different studies suggesting that browning of white adipose tissue, or modulated hepatic gluconeogenesis, may be related to enhanced glucose clearance when the gut microbiota is absent. Here, we investigate glucose uptake in 22 different tissues in 3 different mouse models. We find that gut microbiota depletion via treatment with antibiotic cocktails (ABX) promotes glucose uptake in brown adipose tissue (BAT) and cecum. Nevertheless, the adaptive thermogenesis and the expression of uncoupling protein 1 (UCP1) are dispensable for the increased glucose uptake and clearance. Deletion of Ucp1 expressing cells blunts the improvement of glucose clearance in ABX-treated mice. Our results indicate that BAT and cecum, but not white adipose tissue (WAT) or liver, contribute to the glucose uptake in the gut microbiota depleted mouse model and this response is dissociated from adaptive thermogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhihan Wang ◽  
Xuefeng Yu ◽  
Yong Chen

Brown and beige adipose tissues possess the remarkable capacity to convert energy into heat, which potentially opens novel therapeutic perspectives targeting the epidemic of metabolic syndromes such as obesity and type 2 diabetes. These thermogenic fats implement mitochondrial oxidative phosphorylation and uncouple respiration to catabolize fatty acids and glucose, which leads to an increase in energy expenditure. In particular, beige adipocytes that arise in white adipose tissue display their thermogenic capacity through various noncanonical mechanisms. This review aims to summarize the general overview of thermogenic fat, especially including the UCP1-independent adaptive thermogenesis and the emerging mechanisms of “beiging”, which may provide more evidence of targeting thermogenic fat to counteract obesity and other metabolic disorders in humans.


2021 ◽  
Author(s):  
Zhanguo Gao ◽  
Alexes C. Daquinag ◽  
Cale Fussell ◽  
Amel Djehal ◽  
Laurent Désaubry ◽  
...  

Prohibitin-1 (PHB) is a multifunctional protein previously reported to be important for adipocyte function. PHB is expressed on the surface of adipose cells, where it interacts with a long chain fatty acid (LCFA) transporter. Here, we show that mice lacking PHB in adipocytes (PHB Ad-KO) have a defect in fat tissue accumulation despite having larger lipid droplets in adipocytes due to reduced lipolysis. Although PHB Ad-KO mice do not display glucose intolerance, they are insulin resistant. We show that PHB Ad-KO mice are lipid intolerant due to a decreased capacity of adipocytes for LCFA uptake. Instead, PHB Ad-KO mice have increased expression of glucose transporter GLUT1 in various tissues and use glucose as a preferred energy source. We demonstrate that PHB Ad-KO mice have defective brown AT, are cold-intolerant, and display a reduced basal energy expenditure. Systemic repercussions of PHB inactivation in adipocytes were observed in both males and females. Consistent with lower cellular mitochondrial content and reduced UCP1 protein expression, brown adipocytes lacking PHB display decreased proton leak and switch from aerobic metabolism to glycolysis. Treatment of differentiating brown adipocytes with small molecules targeting PHB suppressed mitochondrial respiration and uncoupling. Our results demonstrate that PHB in adipocytes is essential for normal fatty acid uptake, oxidative metabolism, and adaptive thermogenesis. We conclude that PHB inhibition could be investigated as an approach to altering energy substrate utilization.


Sign in / Sign up

Export Citation Format

Share Document