First principles of copepod development help explain global marine diversity patterns

Oecologia ◽  
2012 ◽  
Vol 170 (2) ◽  
pp. 289-295 ◽  
Author(s):  
Nicholas R. Record ◽  
Andrew J. Pershing ◽  
Frédéric Maps
2021 ◽  
Vol 288 (1962) ◽  
Author(s):  
Matthew R. Kerr ◽  
John Alroy

Latitudinal diversity gradients are among the most striking patterns in nature. Despite a large body of work investigating both geographic and environmental drivers, biogeographical provinces have not been included in statistical models of diversity patterns. Instead, spatial studies tend to focus on species–area and local–regional relationships. Here, we investigate correlates of a latitudinal diversity pattern in Australian coastal molluscs. We use an online database of greater than 300 000 specimens and quantify diversity using four methods to account for sampling variation. Additionally, we present a biogeographic scheme using factor analysis that allows for both gradients and sharp boundaries between clusters. The factors are defined on the basis of species composition and are independent of diversity. Regardless of the measure used, diversity is not directly explained by combinations of abiotic variables. Instead, transitions between regions better explain the observed patterns. Biogeographic gradients can in turn be explained by environmental variables, suggesting that environmental controls on diversity may be indirect. Faunas within provinces are homogeneous regardless of environmental variability. Thus, transitions between provinces explain most of the variation in diversity because small-scale factors are dampened. This explanation contrasts with the species-energy hypothesis. Future work should more carefully consider biogeographic gradients when investigating diversity patterns.


Paleobiology ◽  
2008 ◽  
Vol 34 (1) ◽  
pp. 80-103 ◽  
Author(s):  
Alistair J. McGowan ◽  
Andrew B. Smith

The consensus view that the amount of rock available for sampling does not significantly and systematically bias Phanerozoic marine diversity patterns has broken down. How changes in rock availability and sampling intensity affect our estimates of past biodiversity has been investigated with a variety of new approaches. A number of proxies for the amount of rock available for sampling have been used, but most of these proxies do not rely directly on evidence from large-scale geological maps (maps that cover small areas) and accompanying memoirs. Most previous map-based studies focused on single regions or relied on small-scale synoptic maps. We collected data from published geological maps and memoirs from western Europe, Australia, and Chile, which we combined with COSUNA data from the United States to generate the first multiregional data set for investigating whether the global Phanerozoic marine diversity record is a true global record, or is instead biased toward North America and Western Europe as has long been suspected. Both short and long-term trends in variation in the amount of outcrop display limited correlation among the regions studied. A series of diversification models obtained better matches to observed fossil diversity from the European and U.S. records than for the Chilean and Australian records, further supporting suspicions that the global Phanerozoic diversity curve is disproportionately influenced by European and U.S. fossil data. These results indicate that future research into Phanerozoic marine diversity patterns should not continue to apply global eustatic curves as a proxy for rock at outcrop, but should use regional data on rock occurrence.


1998 ◽  
Vol 93 (6) ◽  
pp. 947-954 ◽  
Author(s):  
C.J. ADAM ◽  
S.J. CLARK ◽  
M.R. WILSON ◽  
G.J. ACKLAND ◽  
J. CRAIN

1998 ◽  
Vol 77 (4) ◽  
pp. 1063-1075
Author(s):  
W. C. Mackrodt, E.-A. Williamson, D. W

1997 ◽  
Vol 42 (2) ◽  
pp. 173-174
Author(s):  
Terri Gullickson
Keyword(s):  

1981 ◽  
Vol 42 (C6) ◽  
pp. C6-625-C6-627 ◽  
Author(s):  
P. E. Van Camp ◽  
V. E. Van Doren ◽  
J. T. Devreese

Sign in / Sign up

Export Citation Format

Share Document