Sole Marks at the base of the late Pleistocene Abrigo Ignimbrite, Tenerife: implications for transport and depositional processes at the base of pyroclastic flows

2004 ◽  
Vol 66 (4) ◽  
pp. 356-363 ◽  
Author(s):  
Adrian Pittari ◽  
R. A. F. Cas
2019 ◽  
Vol 7 (2) ◽  
pp. T265-T282 ◽  
Author(s):  
Katelynn M. Smith ◽  
John H. McBride ◽  
Stephen T. Nelson ◽  
R. William Keach ◽  
Samuel M. Hudson ◽  
...  

Pilot Valley, located in the eastern Basin and Range, Western Utah, USA, contains numerous shorelines and depositional remnants of Late Pleistocene Lake Bonneville. These remnants present excellent ground-penetrating radar (GPR) targets due to their coherent stratification, low-clay, low-salinity, and low moisture content. Three-dimensional GPR imaging can resolve fine-scale stratigraphy of these deposits down to a few centimeters, and when combined with detailed outcrop characterization, it provides an in-depth look at the architecture of these deposits. On the western side of Pilot Valley, a well-preserved late Pleistocene gravel bar records shoreline depositional processes associated with the Provo (or just post-Provo) shoreline period. GPR data, measured stratigraphic sections, cores, paleontological sampling for paleoecology and radiocarbon dating, and mineralogical analysis permit a detailed reconstruction of the depositional environment of this well-exposed prograding gravel bar. Contrary to other described Bonneville shoreline deposits, calibrated radiocarbon ages ranging from 16.5 to 14.3 (ka, BP) indicate that the bar was stable and active during an overall regressive stage of the lake, as it dropped from the Provo shoreline (or just post-Provo level). Our study provides a model for an ancient pluvial lakeshore depositional environment in the Basin and Range province and suggests that stable, progradational bedforms common to the various stages of Lake Bonneville are likely not all associated with periods of shoreline stability, as is commonly assumed. The high-resolution GPR visualization demonstrates the high degree of compartmentalization possible for a potential subsurface reservoir target based on ancient shoreline sedimentary facies.


Author(s):  
Tonya R. Brami ◽  
Carlos Pirmez ◽  
Curtis Archie ◽  
Sookdeo Heeralal ◽  
Kelly L. Holman

2010 ◽  
Vol 74 (1) ◽  
pp. 63-72 ◽  
Author(s):  
A. Matmon ◽  
J.P. Briner ◽  
G. Carver ◽  
P. Bierman ◽  
R.C. Finkel

AbstractWe present 10Be exposure ages from moraines in the Delta River Valley, a reference locality for Pleistocene glaciation in the northern Alaska Range. The ages are from material deposited during the Delta and Donnelly glaciations, which have been correlated with MIS 6 and 2, respectively. 10Be chronology indicates that at least part of the Delta moraine stabilized during MIS 4/3, and that the Donnelly moraine stabilized ∼ 17 ka. These ages correlate with other dates from the Alaska Range and other regions in Alaska, suggesting synchronicity across Beringia during pulses of late Pleistocene glaciation. Several sample types were collected: boulders, single clasts, and gravel samples (amalgamated small clasts) from around boulders as well as from surfaces devoid of boulders. Comparing 10Be ages of these sample types reveals the influence of pre/post-depositional processes, including boulder erosion, boulder exhumation, and moraine surface lowering. These processes occur continuously but seem to accelerate during and immediately after successive glacial episodes. The result is a multi-peak age distribution indicating that once a moraine persists through subsequent glaciations the chronological significance of cosmogenic ages derived from samples collected on that moraine diminishes significantly. The absence of Holocene ages implies relatively minor exhumation and/or weathering since 12 ka.


2021 ◽  
Author(s):  
◽  
Georgia Rose Grant

<p>Stability of the East Antarctic Ice Sheet (EAIS), in response to the orbitally-paced cooling climate of the Late Neogene, is largely unknown. The Wilkes Land margin of East Antarctica, largely grounded below sea level, has previously been proposed to respond dynamically during the warmer climate of the Pliocene, similarly to other marine based sectors of Antarctica (i.e. West Antarctica). Sediment deposition on the Wilkes Land continental rise, recovered in Integrated Ocean Drilling Program U1361A drillcore provides a distal but continuous record of EAIS fluctuations. Changes in sedimentary depositional environments at U1361A core site, were determined through analysis of lithofacies and physical property logs: natural gamma-ray (NGR), gamma-ray attenuation bulk density (GRA), magnetic susceptibility (MS) and L* colour reflectance. NGR primarily reflected biogenic content and a synchronous relationship between NGR, GRA and MS was used to identify interglacial and glacial phases, whereby decreased NGR, GRA and MS values indicated an increase in biogenic material. L* colour reflectance was more variable through time, displayed higher frequency fluctuations and a changing relationship with the other physical property logs down core. Two depositional models, based on facies interpretations and the defined physical property relationships, were produced for the Middle Late Pleistocene (last ~550 kyr; model A) and mid-Pliocene (~4.2-3.6 Ma; model B), which represent end members. Depositional processes common to both models occurred in the intervening core, spanning the Late Pliocene-Early Pleistocene (3-1 Ma). Model A, applied to the Middle Late Pleistocene, shows that alternating diatom-rich clays to silty clays in the upper 9 m of core U1361A, reflect the large amplitude ~100 kyr paced glacial-interglacial cycles, which is confirmed by spectral analysis of the physical properties for this interval. Model B, applied to the Early Pliocene, suggest that the depositional processes recorded by facies may have been less sensitive to EAIS fluctuations, probably due to the fact that the ice margin was generally more distal to the core site during glacial-interglacial cycles of advance and retreat. Nevertheless, these more subtle changes in lithology were characterised by variations in the physical property logs, and spectral analysis of these time series implied orbital pacing was still influential on depositional processes at this time (displaying power in precession and obliquity frequencies). Spectral analysis of the physical property logs and visual correlations to the benthic δ18O stack, confirmed the 4.2-1 Ma interval was paced by ~40 kyr and implies obliquity-paced oscillations of the margin of the EAIS. Precession periodicities, significant in spectra throughout the 4.2 Myr record, are proposed to be the response of phytoplankton productivity in response to seasonal insolation controlling sea-ice extent.</p>


2021 ◽  
Author(s):  
Laura del Valle Villalonga ◽  
Francesc Pomar ◽  
Joan J Fornós ◽  
Bernadí Gelabert ◽  
Alida Timar-Gabor

Abstract We analyze the evolution of the undeformed Middle to Late Pleistocene deposits of Es Codolar (Southern Eivissa, Western Mediterranean). The outcrop records a succession characterized by the alternation of aeolian, colluvial and alluvial fan deposits and palaeosols that result in a complex stratigraphic architecture. In this area, aeolian beds, colluvial deposits and palaeosols are exposed along sea-cliffs for almost 500 m, allowing detailed descriptions both of the general sedimentological and geomorphological features of the Middle to Late Pleistocene deposits. Several different types of soft-sediment deformation structures are described (Load-casts structures, injection structures, water-scape structures, rizoconcretions), which will help us in the understanding of the climatic evolution and the syn and post-depositional processes. In this way, main processes triggering the formation of these structures seem to be sea level changes together with a wetter environment during warmer climatic episodes.


2020 ◽  
Author(s):  
Natacha Fabregas ◽  
Robert Gawthorpe ◽  
Mary Ford ◽  
Martin Muravchik ◽  
Sofia Pechlivanidou ◽  
...  

&lt;p&gt;The Gulf of Corinth is one of the World&amp;#8217;s fastest extending continental rift basins. During the Late Pleistocene, it alternated between marine and lacustrine conditions due to climate-driven sea-level fluctuations connecting or isolating/semi-isolating it from the open ocean. Core from IODP Expedition 381 (Corinth Active Rift Development) provide a continuous record of depositional processes operating within this deep-water rift and the interaction of tectonic and climate drivers controlling deep-water deposition over the Middle to Late Pleistocene. Subaqueous sediment density flows affect the Gulf of Corinth and are classified either by physical flow properties and grain support mechanisms or by depositional processes. Existing classifications mainly describe deposits from decimetre to 10&amp;#8217;s of meter scale with an emphasis on sandy beds. Thinner (millimetre to centimetre scale) and finer (muddy to sandy) subaqueous sedimentary density flows beds are understudied. Low energy flows and tail of flow processes need a better understanding and are the target of this work. The aim of this study is to characterise the variability of fine-grained subaqueous sedimentary gravity flow deposits and the controls on their development based on core data from Site M0079 (IODP Expedition 381).&amp;#160; This site is located in the deepest part of the Gulf of Corinth (857 m water depth), in the most distal part of the sediment routing system. Analyses were performed within a 100 m interval covering Marine Isotope Stages 6 and 7 (from ~130 to ~250 ka). Detailed, sub-centimetre visual logging recorded over 2 000 beds classified according to (1) the presence/absence of a coarse base, (2) the grain-size (silty or sandy) of the base (if any), (3) the presence/absence of laminations within the muddy intervals, (4) sedimentary structures. The bed types reflect the diversity of the sedimentary processes and the subaqueous sediment density flows are thus organised within the depositional model. Bed frequency analysis provides insight into the variability between marine and lacustrine conditions. Relative chemical composition obtained from high resolution (2 mm) X-ray fluorescence scanning is used: (1) to examine the interactions between tail of the flow and background sedimentation in the basin and (2) to assess the provenance of the sediments.&lt;/p&gt;


2020 ◽  
Author(s):  
Alessandra Pensa ◽  
Sveva Corrado ◽  
Guido Giordano

&lt;p&gt;Temperature evaluation of PDCs has been recently performed using optical analysis of charred wood (Reflectance analysis - Ro%) embedded within the pyroclastic deposits.&lt;/p&gt;&lt;p&gt;The validity of this proxy for the emplacement temperature assessment, has been established in different case studies (Fogo Volcano, Laacher See volcano, Merapi Volcano, Colima Volcano, Do&amp;#241;a Juana Volcano, Ercolano-Vesuvius Volcano), resulting comparable with the already well know paleomagnetic analysis (pTRM).&lt;/p&gt;&lt;p&gt;Due to its not retrograde nature, the process of carbonification records over time the maximum temperatures experienced by the wood fragment/tree trunk/furniture. This peculiarity has great importance in terms of timing of charring events, as the charred wood can record the possible temperature fluctuations in case of multiple pulse events. This allows us to reconstruct the thermal and dynamic of PDCs history at different steps.&lt;/p&gt;&lt;p&gt;Reflectance analysis (Ro%) results display samples with homogeneous charring temperature (same Ro% values) from rim to core and others with different charring temperatures throughout the sample. Ro% of the latter usually infer higher temperature on the edge of the fragment/tree trunk than in the inner part. This bimodal reflectance distribution can be attributable to multiple temperature exposure, occurred during diachronous events of flow and deposition. Therefore, within the same fragment/tree trunk we can extrapolate PDCs temperature information related not only to equilibrium (emplacement) condition but, more importantly, to dynamic (flow) regime.&lt;/p&gt;&lt;p&gt;This study constitutes a pioneering attempt for the indirect estimation of the temperature of the PDCs not only for volcanic hazard estimation, but also in the archaeological field. In fact, the numerous remains of charred wooden artefacts found in the archaeological sites of Pompeii, Herculaneum and in the Meurin quarry (Eiffel-Germany), allowed the reconstruction of temperature variation based on the vent distance and the presence of buildings which may have interacted with the depositional processes of pyroclastic flows. This study opens a promising new frontier to evaluate the maximum temperature of the PDCs, based on the degree of carbonization of the organic matter incorporated during volcanic events. Estimating the temperature of the dynamic temperature of the PDC has important implications in terms of volcanic risk assessment.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document