Heterogeneous andesite–dacite ejecta in 26–16.6 ka pyroclastic deposits of Tongariro Volcano, New Zealand: the product of multiple magma-mixing events

2007 ◽  
Vol 70 (4) ◽  
pp. 517-536 ◽  
Author(s):  
Phil Shane ◽  
Louise R. Doyle ◽  
Ian A. Nairn
2012 ◽  
Vol 54 (4) ◽  
pp. 703-744 ◽  
Author(s):  
Fiona V. Foley ◽  
Norman J. Pearson ◽  
Tracy Rushmer ◽  
Simon Turner ◽  
John Adam

1998 ◽  
Vol 135 (5) ◽  
pp. 605-636 ◽  
Author(s):  
S. E. BRYAN ◽  
J. MARTÍ ◽  
R. A. F. CAS

Explosive volcanism has dominated the large phonolitic shield volcano of Tenerife, the Las Cañadas edifice, for the last 1.5 m.y. Pyroclastic deposits of the Bandas del Sur Formation are exposed along the southern flanks, and record the last two of at least three long-term cycles of caldera-forming explosive eruptions. Each cycle began with flank fissure eruptions of alkali basalt lava, followed by minor eruptions of basanite to phonotephrite lavas. Minor phonotephritic to phonolitic lava effusions also occurred on the flanks of the edifice during the latter stages of the second explosive cycle. Non-welded plinian fall deposits and ignimbrites are the dominant explosive products preserved on the southern flanks. Of these, a significant volume has been dispersed offshore. Many pyroclastic units of the second explosive cycle exhibit compositional zonation. Banded pumice occurs in most units of the third (youngest) explosive cycle, and ignimbrites typically contain mixed phenocryst assemblages, indicating the role of magma mixing/mingling prior to eruption. At least four major eruptions of the third cycle began with phreatomagmatic activity, producing lithic-poor, accretionary lapilli-bearing fallout and/or surge deposits. The repeated, brief phase of phreatomagmatism at the onset of these eruptions is interpreted as reflecting an exhaustive water supply, probably a small caldera lake that was periodically established during the third cycle. Accidental syenite becomes an increasingly important lithic clast type in ignimbrites up-sequence, and is interpreted as recording the progressive development of a plutonic complex beneath the summit caldera.Successive eruptions during each explosive cycle increased in volume, with the largest eruption occurring at the end of the cycle. More than ten major explosive eruptions vented moderately large volumes (1−[ges ]10 km3) of phonolitic magma during the last two cycles. Culminating each explosive cycle was the emplacement of relatively large volume (>5−10 km3) ignimbrites with coarse, vent-derived lithic breccias, interpreted to record a major phase of caldera collapse. In the extracaldera record, explosive cycles are separated by ∼0.2 m.y. periods of non-explosive activity. Repose periods were characterized by erosion, remobilization of pyroclastic deposits by discharge events, and pedogenesis. The current period of non-explosive activity is characterized by the construction of the Teide-Pico Viejo stratovolcanic complex within the summit caldera. This suggests that eruptive hiatuses in the extracaldera record may reflect effusive activity and stratovolcano or shield-building phases within the summit caldera. Alternating effusive and explosive cycles have thus been important in the volcanic evolution of the Las Cañadas edifice.


Lithos ◽  
2012 ◽  
Vol 140-141 ◽  
pp. 1-10 ◽  
Author(s):  
Phil Shane ◽  
Sonja Storm ◽  
Axel K. Schmitt ◽  
Jan M. Lindsay

2020 ◽  
Author(s):  
Adam J. Brackman ◽  
◽  
Matthew Deitel ◽  
Gillian Greenberg ◽  
Jocelyne Nolasco ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Thomas W. Benson ◽  
Finnigan Illsley-Kemp ◽  
Hannah C. Elms ◽  
Ian J. Hamling ◽  
Martha K. Savage ◽  
...  

Tarawera volcano (New Zealand) is volumetrically dominated by rhyolitic lavas and pyroclastic deposits, but the most recent event in AD 1886 was a basaltic Plinian fissure eruption. In March 2019 a swarm of at least 64 earthquakes occurred to the NE of Tarawera volcano, as recorded by the New Zealand Geohazard Monitoring Network (GeoNet). We use seismological analysis to show that this swarm was most likely caused by a dyke that intruded into the brittle crust between depths of 8–10 km and propagated toward Tarawera volcano for 2 km at a rate of 0.3–0.6 m s−1. We infer that this was a dyke of basaltic composition that was stress-guided toward Tarawera volcano by the topographic load of the volcanic edifice. Dyke intrusions of this nature are most likely a common occurrence but a similar process may have occurred during the 1886 eruption with a dyke sourced from some lateral distance away from the volcano. The 2019 intrusion was not detected by InSAR geodesy and we use synthetic models to show that geodetic monitoring could only detect a ≥6 m wide dyke at these depths. Improvements to geodetic monitoring, combined with detailed seismological analysis, could better detect future magmatic intrusions in the region and serve to help assess ongoing changes in the magmatic system and the associated possibilities of a volcanic event.


Sign in / Sign up

Export Citation Format

Share Document