scholarly journals Distributed computation and reconfiguration in actively dynamic networks

Author(s):  
Othon Michail ◽  
George Skretas ◽  
Paul G. Spirakis

AbstractWe study here systems of distributed entities that can actively modify their communication network. This gives rise to distributed algorithms that apart from communication can also exploit network reconfiguration to carry out a given task. Also, the distributed task itself may now require a global reconfiguration from a given initial network $$G_s$$ G s to a target network $$G_f$$ G f from a desirable family of networks. To formally capture costs associated with creating and maintaining connections, we define three edge-complexity measures: the total edge activations, the maximum activated edges per round, and the maximum activated degree of a node. We give (poly)log(n) time algorithms for the task of transforming any $$G_s$$ G s into a $$G_f$$ G f of diameter (poly)log(n), while minimizing the edge-complexity. Our main lower bound shows that $$\varOmega (n)$$ Ω ( n ) total edge activations and $$\varOmega (n/\log n)$$ Ω ( n / log n ) activations per round must be paid by any algorithm (even centralized) that achieves an optimum of $$\varTheta (\log n)$$ Θ ( log n ) rounds. We give three distributed algorithms for our general task. The first runs in $$O(\log n)$$ O ( log n ) time, with at most 2n active edges per round, a total of $$O(n\log n)$$ O ( n log n ) edge activations, a maximum degree $$n-1$$ n - 1 , and a target network of diameter 2. The second achieves bounded degree by paying an additional logarithmic factor in time and in total edge activations. It gives a target network of diameter $$O(\log n)$$ O ( log n ) and uses O(n) active edges per round. Our third algorithm shows that if we slightly increase the maximum degree to polylog(n) then we can achieve $$o(\log ^2 n)$$ o ( log 2 n ) running time.

Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Pat Morin ◽  
Bartosz Walczak ◽  
David R. Wood

Abstract A (not necessarily proper) vertex colouring of a graph has clustering c if every monochromatic component has at most c vertices. We prove that planar graphs with maximum degree $\Delta$ are 3-colourable with clustering $O(\Delta^2)$ . The previous best bound was $O(\Delta^{37})$ . This result for planar graphs generalises to graphs that can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then prove that graphs with maximum degree $\Delta$ that exclude a fixed minor are 3-colourable with clustering $O(\Delta^5)$ . The best previous bound for this result was exponential in $\Delta$ .


2021 ◽  
Vol 13 (2) ◽  
pp. 1-37
Author(s):  
Ivona Bezáková ◽  
Andreas Galanis ◽  
Leslie Ann Goldberg ◽  
Daniel Štefankovič

We study the problem of approximating the value of the matching polynomial on graphs with edge parameter γ, where γ takes arbitrary values in the complex plane. When γ is a positive real, Jerrum and Sinclair showed that the problem admits an FPRAS on general graphs. For general complex values of γ, Patel and Regts, building on methods developed by Barvinok, showed that the problem admits an FPTAS on graphs of maximum degree Δ as long as γ is not a negative real number less than or equal to −1/(4(Δ −1)). Our first main result completes the picture for the approximability of the matching polynomial on bounded degree graphs. We show that for all Δ ≥ 3 and all real γ less than −1/(4(Δ −1)), the problem of approximating the value of the matching polynomial on graphs of maximum degree Δ with edge parameter γ is #P-hard. We then explore whether the maximum degree parameter can be replaced by the connective constant. Sinclair et al. showed that for positive real γ, it is possible to approximate the value of the matching polynomial using a correlation decay algorithm on graphs with bounded connective constant (and potentially unbounded maximum degree). We first show that this result does not extend in general in the complex plane; in particular, the problem is #P-hard on graphs with bounded connective constant for a dense set of γ values on the negative real axis. Nevertheless, we show that the result does extend for any complex value γ that does not lie on the negative real axis. Our analysis accounts for complex values of γ using geodesic distances in the complex plane in the metric defined by an appropriate density function.


2009 ◽  
Vol 19 (02) ◽  
pp. 119-140 ◽  
Author(s):  
PROSENJIT BOSE ◽  
MICHIEL SMID ◽  
DAMING XU

Given a triangulation G, whose vertex set V is a set of n points in the plane, and given a real number γ with 0 < γ < π, we design an O(n)-time algorithm that constructs a connected subgraph G' of G with vertex set V whose maximum degree is at most 14 + ⌈2π/γ⌉. If G is the Delaunay triangulation of V, and γ = 2π/3, we show that G' is a t-spanner of V (for some constant t) with maximum degree at most 17, thereby improving the previously best known degree bound of 23. If G is a triangulation satisfying the diamond property, then for a specific range of values of γ dependent on the angle of the diamonds, we show that G' is a t-spanner of V (for some constant t) whose maximum degree is bounded by a constant dependent on γ. If G is the graph consisting of all Delaunay edges of length at most 1, and γ = π/3, we show that a modified version of the algorithm produces a plane subgraph G' of the unit-disk graph which is a t-spanner (for some constant t) of the unit-disk graph of V, whose maximum degree is at most 20, thereby improving the previously best known degree bound of 25.


Author(s):  
NOGA ALON ◽  
RAJKO NENADOV

AbstractWe show that for any constant Δ ≥ 2, there exists a graph Γ withO(nΔ / 2) vertices which contains everyn-vertex graph with maximum degree Δ as an induced subgraph. For odd Δ this significantly improves the best-known earlier bound and is optimal up to a constant factor, as it is known that any such graph must have at least Ω(nΔ/2) vertices.


10.37236/831 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Paz Carmi ◽  
Vida Dujmović ◽  
Pat Morin ◽  
David R. Wood

The distance-number of a graph $G$ is the minimum number of distinct edge-lengths over all straight-line drawings of $G$ in the plane. This definition generalises many well-known concepts in combinatorial geometry. We consider the distance-number of trees, graphs with no $K^-_4$-minor, complete bipartite graphs, complete graphs, and cartesian products. Our main results concern the distance-number of graphs with bounded degree. We prove that $n$-vertex graphs with bounded maximum degree and bounded treewidth have distance-number in ${\cal O}(\log n)$. To conclude such a logarithmic upper bound, both the degree and the treewidth need to be bounded. In particular, we construct graphs with treewidth $2$ and polynomial distance-number. Similarly, we prove that there exist graphs with maximum degree $5$ and arbitrarily large distance-number. Moreover, as $\Delta$ increases the existential lower bound on the distance-number of $\Delta$-regular graphs tends to $\Omega(n^{0.864138})$.


10.37236/1577 ◽  
2001 ◽  
Vol 8 (1) ◽  
Author(s):  
Andrzej Czygrinow ◽  
Genghua Fan ◽  
Glenn Hurlbert ◽  
H. A. Kierstead ◽  
William T. Trotter

Dirac's classic theorem asserts that if ${\bf G}$ is a graph on $n$ vertices, and $\delta({\bf G})\ge n/2$, then ${\bf G}$ has a hamilton cycle. As is well known, the proof also shows that if $\deg(x)+\deg(y)\ge(n-1)$, for every pair $x$, $y$ of independent vertices in ${\bf G}$, then ${\bf G}$ has a hamilton path. More generally, S. Win has shown that if $k\ge 2$, ${\bf G}$ is connected and $\sum_{x\in I}\deg(x)\ge n-1$ whenever $I$ is a $k$-element independent set, then ${\bf G}$ has a spanning tree ${\bf T}$ with $\Delta({\bf T})\le k$. Here we are interested in the structure of spanning trees under the additional assumption that ${\bf G}$ does not have a spanning tree with maximum degree less than $k$. We show that apart from a single exceptional class of graphs, if $\sum_{x\in I}\deg(x)\ge n-1$ for every $k$-element independent set, then ${\bf G}$ has a spanning caterpillar ${\bf T}$ with maximum degree $k$. Furthermore, given a maximum path $P$ in ${\bf G}$, we may require that $P$ is the spine of ${\bf T}$ and that the set of all vertices whose degree in ${\bf T}$ is $3$ or larger is independent in ${\bf T}$.


2010 ◽  
Vol Vol. 12 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Mieczyslaw Borowiecki ◽  
Anna Fiedorowicz ◽  
Katarzyna Jesse-Jozefczyk ◽  
Elzbieta Sidorowicz

Graphs and Algorithms International audience A k-colouring of a graph G is called acyclic if for every two distinct colours i and j, the subgraph induced in G by all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, there are no bichromatic alternating cycles. In 1999 Boiron et al. conjectured that a graph G with maximum degree at most 3 has an acyclic 2-colouring such that the set of vertices in each colour induces a subgraph with maximum degree at most 2. In this paper we prove this conjecture and show that such a colouring of a cubic graph can be determined in polynomial time. We also prove that it is an NP-complete problem to decide if a graph with maximum degree 4 has the above mentioned colouring.


Sign in / Sign up

Export Citation Format

Share Document