Nutrient composition of culture media induces different patterns of CO2 fixation from biogas and biomass production by the microalga Scenedesmus obliquus U169

2017 ◽  
Vol 40 (12) ◽  
pp. 1733-1742 ◽  
Author(s):  
Francisco J. Choix ◽  
Elena Polster ◽  
Rosa Isela Corona-González ◽  
Raúl Snell-Castro ◽  
Hugo O. Méndez-Acosta
2019 ◽  
Vol 17 (2) ◽  
pp. 196
Author(s):  
Eliseo Amado-González ◽  
Alveiro Álvarez Ovallos ◽  
Alfonso Quijano Parra

Low frecuency electromagnetic fields effect (EMF) on growth cycles of yeast Saccharomyces cerevisiae wine strains Rv1 and Rhône were studied.  A cylindrical coil induced magnetic fields with inductions up to 0,39 mT. Exposure time to EMF varied between (1 – 10) min at 30 °C.  The biomass growth were monitored in the reactor culture media (yeast extract + by measurement optical density from (0 to 32) h. The biomass was found by dry weight. After yeast expose to the different EMF, the number of growth cycles decreased from 4 cycles to 2 or 1. However, the biomass production increased almost 50 %.  The best biomass production was found at 0.39 mT and 10 min exposure time.  Keywords: Electromagnetic fields, Saccharomyces cerevisiae, biomass production, RV1


2016 ◽  
Vol 115 ◽  
pp. 255-264 ◽  
Author(s):  
Sanjay Kumar Gupta ◽  
Faiz Ahmad Ansari ◽  
Amritanshu Shriwastav ◽  
Narendra Kumar Sahoo ◽  
Ismail Rawat ◽  
...  

2010 ◽  
Vol 56 (2) ◽  
pp. 128-137 ◽  
Author(s):  
D. Spadaro ◽  
A. Ciavorella ◽  
Z. Dianpeng ◽  
A. Garibaldi ◽  
M. L. Gullino

Few strains of Metschnikowia pulcherrima (Pitt) M.W. Miller are under development for control of postharvest pathogens on fruit. A substrate was developed to optimize the biomass production of M. pulcherrima strain BIO126. Different complex nutrient sources, with or without pH control, were tested. Growth in yeast extract provided at concentrations ≥30 g·L–1yielded the highest biomass. The addition of two carbon sources, d-mannitol and l-sorbose, at 5 g·L–1each, significantly improved yeast growth. The greatest amount of yeast growth occurred when pH values of the medium ranged from 5.0 to 7.5. A combination of yeast extract, d-mannitol, and l-sorbose (YEMS), probably with diauxic utilization, showed a synergistic effect, widening the exponential phase (maximum specific growth rate of 0.45 h–1) and increasing the final cell number (1.5 × 109cells·mL–1) and dry biomass (6.0 g·L–1) in well-controlled batch fermentation. In efficacy trials on ‘Golden Delicious’ apples, M. pulcherrima grown in YEMS effectively reduced incidence and severity of Botrytis cinerea (51.1% and 70.8%, respectively) and Penicillium expansum (41.7% and 14.0%, respectively). Also on ‘Gala’ apples, the best reduction of grey and blue mould incidence was obtained with cells grown in YEMS (58.1% and 50.5%, respectively).


2017 ◽  
Vol 120 ◽  
pp. 6-14 ◽  
Author(s):  
Mauricio J. Alessandrello ◽  
María S. Juárez Tomás ◽  
Paula Isaac ◽  
Diana L. Vullo ◽  
Marcela A. Ferrero

2021 ◽  
Author(s):  
Jilin Yuan ◽  
Linyang Li ◽  
Chuanbao Xiao ◽  
Nianbing Zhong ◽  
Dengjie Zhong ◽  
...  

Abstract The need for wastewater treatment is progressively rising as the release of copious amounts of industrial wastewater is increasing. Likewise, there is an urgent requirement for renewable energy sources because of the growing energy demand and depletion of fossil fuels. The use of microalgae to convert toxic phenolic wastewater to lipid-enriched biofuel has recently been proposed. Here, we report a new strategy for coupling N-doped TiO2-coated photocatalytic optical fibers and a microalgal biofilm to degrade 4-chlorophenol (4-CP) and produce biomass. In the combined photocatalysis and biodegradation system, the photocatalytic products were directly biodegraded by the heterotroph-enriched (Salinarimonas and Pseudomonas) biofilm, promoting biomass production; O2 produced by the phototrophs (Scenedesmus obliquus) promoted the generation of hydroxyl free radicals using N-doped TiO2. Thus, the combined photocatalysis and biodegradation system rapidly and sustainably degraded 4-CP while maintaining the growth of the microalgal biomass. The 4-CP removal, dechlorination, and biofilm growth rates reached ~78 µM/h, ~41 µM/h, and 1.8 g/h/m2, respectively. Overall, we present a useful synergy between an optical catalyst and a bioreactor that has implications for both wastewater remediation and sustainable microalgal biomass production.


Author(s):  
Suwapha Sawiphak ◽  
Aroon Wongjiratthiti ◽  
Chanankarn Saengprasan

Dioscorea alata (purple yam) is a tuber crop that contains plenty of nutrients. It is widely cultivated in Thailand, but it is underutilized. In this study, the suitability of purple yam to replace potato dextrose media for fungal growth was investigated. Mushrooms and molds were grown on purple yam dextrose agar (PYDA), whereas yeasts were cultured in purple yam dextrose broth (PYDB). Response surface methodology (RSM) with Box-Behnken design (BBD) was used to optimize the culture conditions for Saccharomyces cerevisiae biomass production. The growth profile of S. cerevisiae in PYDB under optimized culture conditions was also studied. All test mushrooms and molds recorded the highest colony diameter and mycelial dry weight on PYDA containing 40% purple yam. Similar to mushrooms and molds, yeasts in PYDB with 40% purple yam showed the highest number of cells. The growth of fungi on purple yam dextrose media was significantly higher than those on potato dextrose media under standard conditions. The optimal conditions from the RSM results for the biomass production of S. cerevisiae in PYDB were purple yam concentration of 49.61%, dextrose concentration of 4.87%, pH value of 5.74, and inoculum size of 7.00%. The biomass of S. cerevisiae in PYDB under the optimal conditions obtained from the results of the optimization by RSM was thirty times higher than S. cerevisiae biomass in potato dextrose broth under standard conditions. Our results suggest that purple yam could be an alternative to potato dextrose media for fungal cultivation.


2020 ◽  
Vol 12 (20) ◽  
pp. 8389
Author(s):  
Hassan-Sibroe A. Daanaa ◽  
Mennatullah Abdou ◽  
Hanan A. Goda ◽  
Mohamed T. Abbas ◽  
Mervat A. Hamza ◽  
...  

Although plant-based culture media enhances in vitro cultivation of rhizobacteria, studies assessing their biomass potential for large-scale applications are lacking. Here, we advance plant pellets (PPs) as a novel technology to unlock the potential of such vegan culture media for biomass production of Rhizobium leguminosarum. PP formulations were based on mixtures of Egyptian clover powder and the agro-byproducts glycerol and molasses. These mixtures were either contained or not contained in teabags during culture media preparation. Metrics of biomass included colony forming units, optical density (OD600nm), and cell dry weight (DW). Biomass comparisons between culture media based on PPs and standard yeast extract mannitol (YEM) revealed that the following PPs composition, contained in teabags, cultivated rhizobia at levels comparable to YEM: 16 g clover powder, 5% molasses, and 0.8% glycerol. This PPs composition enabled shorter generation times of rhizobia (PP: 3.83 h, YEM: 4.28 h). Strikingly, PPs mixtures supplemented with 10% molasses and not contained in teabags promoted rhizobia without apparent lag phases and produced 25% greater DW than YEM. PPs potentiate the use of dehydrated vegan feedstocks for both plant microbiota cultivation and biomass production and appear as cost- and labor-effective tools, easy to handle and store for plant-based culture media preparation.


Sign in / Sign up

Export Citation Format

Share Document