nutrient composition
Recently Published Documents


TOTAL DOCUMENTS

1432
(FIVE YEARS 307)

H-INDEX

54
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Hanchen Tian ◽  
Yanchen Zhu ◽  
Mengxue Dai ◽  
Tong Li ◽  
Yongqing Guo ◽  
...  

This study was conducted to investigate the effects of different additives on the fermentation quality, nutrient composition, bacterial communities, and metabolic profiles of the silage of hybrid Pennisetum. The experiment was conducted using five treatments, i.e., CK, control group, MA, 1% malic acid of fresh matter (FM) basis, GL, 1% glucose of FM basis, CE, 100 U/g FM cellulase, and BS, 106 cfu/g FM Bacillus subtilis, with six replicates each treatment. After a 120-day fermentation, 30 silage packages were opened for subsequent determination. As a result, all four additives had positive effects on the fermentation quality and nutrient composition of the silage of hybrid Pennisetum. The high-throughput sequencing of V3–V4 regions in 16S rRNA was performed, and results showed that Firmicutes and Proteobacteria were the dominant phyla and that Aquabacterium and Bacillus were the dominant genera. MA, GL, CE, and BS treatment resulted in 129, 21, 25, and 40 differential bacteria, respectively. The four additives upregulated Bacillus smithii but downregulated Lactobacillus rossiae. Metabolic profiles were determined by UHPLC-Q/TOF-MS technology and the differential metabolites caused by the four additives were 47, 13, 47, and 18, respectively. These metabolites played antioxidant, antibacterial, and anti-inflammatory functions and involved in pathways, such as the citrate cycle, carbon fixation in photosynthetic organisms, and glyoxylate and dicarboxylate metabolism. In conclusion, silage additives promoted fermentation quality and nutrient composition by altering bacterial communities and metabolic profiles. This study provided potential biomarkers for the improvement of silage quality.


2022 ◽  
pp. 101536
Author(s):  
Bing Zhang ◽  
Ayesha Murtaza ◽  
Aamir Iqbal ◽  
Jiao Zhang ◽  
Tingting Bai ◽  
...  

LWT ◽  
2022 ◽  
pp. 113076
Author(s):  
Xi Hu ◽  
Jiarui Zeng ◽  
Fei Shen ◽  
Xuesen Xia ◽  
Xiaofei Tian ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 88-97
Author(s):  
Jie Hung King ◽  
Babirye Khadijah ◽  
Kian Huat Ong

Stem cutting is the common planting material for black pepper (Piper nigrum L.) farmers mainly because the method is cheap, easy to obtain, and produces satisfactory number of new plantlets, which are relatively genetically uniform to their parent. However, soil propagation of stem cuttings renders both the stem and developing roots susceptible to soil borne pathogens, ultimately compromising the quality of the plant. Good quality rootstock of the new plant promotes faster, safer, and better black pepper plant establishment. Hydroponic farming thus offers a good platform for producing quality rootstock of the new plants and has gained importance to many farmers due to its flexibility in manipulating plant growth conditions and timely pathogen management, thus safer, healthier, and faster growth. This study investigated the growing media suitable for rootstock growth of P. nigrum L. cv. ‘Kuching’ and compared the rooting ability between stem cuttings with adventitious roots at the time of planting and stem cuttings without any root at the time of planting. In a laboratory setting, a total of 210 stem cuttings were hydroponically planted in seven nutrient compositions, with each nutrient composition containing an equal number of stem cuttings with adventitious roots at the time of planting and stem cuttings without any root at the time of planting. Hoagland solution supplemented with 0.005 mM potassium silicate solution (T4) and Hoagland solution supplemented with 2 mM salicylic acid solution (T6) showed faster root initiation whereas T1 (Hoagland solution only) produced the highest increment in root length followed by T6. The least suitable nutrient composition was T5 [T4 + 6 mL of 1 M Ca (NO3)2.4H2O solution]. The total number of roots was highest in plants from stem cuttings which had some adventitious roots at the time of planting, whereas roots in plants from stem cuttings which did not have any root at the time of planting, increased in root length faster than plants withstem cuttings which had adventitious roots at the time of planting.


Sign in / Sign up

Export Citation Format

Share Document