A weak form quadrature element formulation of geometrically exact shells incorporating drilling degrees of freedom

2018 ◽  
Vol 63 (4) ◽  
pp. 663-679 ◽  
Author(s):  
Run Zhang ◽  
Hongzhi Zhong ◽  
Xiaohu Yao
2006 ◽  
Vol 03 (01) ◽  
pp. 115-135 ◽  
Author(s):  
MENG-CHENG CHEN ◽  
JIAN-JUN ZHU ◽  
K. Y. SZE

An ad hoc one-dimensional finite element formulation is developed for the eigenanalysis of inplane singular electroelastic fields at material and geometric discontinuities in piezoelectric elastic materials by using the eigenfunction expansion procedure and the weak form of the governing equations for prismatic sectorial domains composed of piezoelectrics, composites or air. The order of the electroelastic singularities and the angular variation of the stress and electric displacement fields are obtained with the formulation. The influence of wedge angle, polarization orientation, material types, and boundary and interface conditions on the singular electroelastic fields and the order of their singularity are also examined. The simplicity and accuracy of the formulation are demonstrated by comparison to several analytical solutions for piezoelectric and composite multi-material wedges. The nature and speed of convergence suggests that the present eigensolution could be used in developing hybrid elements for use along with standard elements to yield accurate and computationally efficient solutions to problems having complex global geometries leading to singular electroelastic states.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983636
Author(s):  
Dae-Jin Kim ◽  
Hong-Jun Son ◽  
Yousun Yi ◽  
Sung-Gul Hong

This article presents generalized finite element formulation for plastic hinge modeling based on lumped plasticity in the classical Euler–Bernoulli beam. In this approach, the plastic hinges are modeled using a special enrichment function, which can describe the weak discontinuity of the solution at the location of the plastic hinge. Furthermore, it is also possible to insert a plastic hinge at an arbitrary location of the element without modifying its connectivity or adding more elements. Instead, the formations of the plastic hinges are achieved by hierarchically adding more degrees of freedom to existing elements. Due to these features, the proposed methodology can efficiently perform the first-order plastic hinge analysis of large-frame structures. A generalized finite element solution technique based on the static condensation scheme is also proposed in order to reduce the computational cost of a series of linear elastic problems, which is in general the most time-consuming portion of the first-order plastic hinge analysis. The effectiveness and accuracy of the proposed method are verified by analyzing several representative numerical examples.


2004 ◽  
Vol 261-263 ◽  
pp. 729-734 ◽  
Author(s):  
Y. Hangai ◽  
Nobuhiro Yoshikawa

A strategy of coupling length scales from atomistic to continuum is investigated on the basis of quasicontinuum model for interface fracture problems. In the model, an atomistic region of the interest is discretized by finite elements and the positions of atoms are prescribed by means of nodal displacements of the elements with shape function for the reduction of the degrees of freedom. Total energy of the system consists of interatomic potentials, and minimized through variational method employed in conventional finite element formulation. In this study, we deal with the fracture behavior of Cu-Fe interface crack in two dimensional problems, and investigate the adequate discretization manner around the crack tip in use of quasicontinuum method.


Author(s):  
Arash Mahdavi ◽  
Eric Mockensturm

We present a new hierarchical modeling technique called the Consistent Atomic-scale Finite Element (CAFE´) method [1]. Unlike traditional approaches for linking the atomic structure to its equivalent continuum [2-7], this method directly connects the atomic degrees of freedom to a reduced set of finite element degrees of freedom without passing through an intermediate homogenized continuum. As a result, there is no need to introduce stress and strain measures at the atomic level. This technique partitions atoms to masters and salves and reduces the total number of degrees of freedom by establishing kinematic constraints between them [5-6]. The Tersoff-Brenner interatomic potential [8] is used to calculate the consistent tangent stiffness matrix of the structure. In this finite element formulation, all local and non-local interactions between carbon atoms are taken into account using overlapping finite elements (Figure 1b). In addition, a consistent hierarchical finite element modeling technique is developed for adaptively coarsening and refining the mesh over different parts of the model (Figure 2a, 2b). The stiffness of higher-rank elements is approximated using the stiffness of lower-rank elements and kinematic constraints. This process is consistent with the underlying atomic structure and, by refining the mesh, molecular dynamic results will be recovered. This method is valid across the scales and can be used to concurrently model atomistic and continuum phenomena so, in contrast with most other multiscale methods [4-7], there is no need to introduce artificial boundaries for coupling atomistic and continuum regions. Effect of the length scale of the nanostructure is also included in the model by building the hierarchy of elements from bottom up using a finite size atom cluster as the building block (Figures 2a, 2b). In this method by introducing two independent field variables, the so-called inner displacement is taken into account (Fig. 3b). Applicability of the method is shown with several examples of deformation of carbon nanostructures such as graphene sheet, nanotube, and nanocone, subjected to different loads and boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document