scholarly journals A Proper Generalized Decomposition (PGD) approach to crack propagation in brittle materials: with application to random field material properties

2019 ◽  
Vol 65 (2) ◽  
pp. 451-473 ◽  
Author(s):  
Hasini Garikapati ◽  
Sergio Zlotnik ◽  
Pedro Díez ◽  
Clemens V. Verhoosel ◽  
E. Harald van Brummelen

Abstract Understanding the failure of brittle heterogeneous materials is essential in many applications. Heterogeneities in material properties are frequently modeled through random fields, which typically induces the need to solve finite element problems for a large number of realizations. In this context, we make use of reduced order modeling to solve these problems at an affordable computational cost. This paper proposes a reduced order modeling framework to predict crack propagation in brittle materials with random heterogeneities. The framework is based on a combination of the Proper Generalized Decomposition (PGD) method with Griffith’s global energy criterion. The PGD framework provides an explicit parametric solution for the physical response of the system. We illustrate that a non-intrusive sampling-based technique can be applied as a post-processing operation on the explicit solution provided by PGD. We first validate the framework using a global energy approach on a deterministic two-dimensional linear elastic fracture mechanics benchmark. Subsequently, we apply the reduced order modeling approach to a stochastic fracture propagation problem.

2000 ◽  
Vol 123 (1) ◽  
pp. 100-108 ◽  
Author(s):  
R. Bladh ◽  
M. P. Castanier ◽  
C. Pierre

In this paper, the component-mode-based methods formulated in the companion paper (Part I: Theoretical Models) are applied to the dynamic analysis of two example finite element models of bladed disks. Free and forced responses for both tuned and mistuned rotors are considered. Comprehensive comparisons are made among the techniques using full system finite element solutions as a benchmark. The accurate capture of eigenfrequency veering regions is of critical importance for obtaining high-fidelity predictions of the rotor’s sensitivity to mistuning. Therefore, particular attention is devoted to this subject. It is shown that the Craig–Bampton component mode synthesis (CMS) technique is robust and yields highly reliable results. However, this is achieved at considerable computational cost due to the retained component interface degrees of freedom. It is demonstrated that this problem is alleviated by a secondary modal analysis reduction technique (SMART). In addition, a non-CMS mistuning projection method is considered. Although this method is elegant and accurate, it is seen that it lacks the versatility and efficiency of the CMS-based SMART. Overall, this work shows that significant improvements on the accuracy and efficiency of current reduced order modeling methods are possible.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5686
Author(s):  
Simona Vermiglio ◽  
Victor Champaney ◽  
Abel Sancarlos ◽  
Fatima Daim ◽  
Jean Claude Kedzia ◽  
...  

Efficient and optimal design of radar-based Advanced Driver Assistant Systems (ADAS) needs the evaluation of many different electromagnetic solutions for evaluating the impact of the radome on the electromagnetic wave propagation. Because of the very high frequency at which these devices operate, with the associated extremely small wavelength, very fine meshes are needed to accurately discretize the electromagnetic equations. Thus, the computational cost of each numerical solution for a given choice of the design or operation parameters, is high (CPU time consuming and needing significant computational resources) compromising the efficiency of standard optimization algorithms. In order to alleviate the just referred difficulties the present paper proposes an approach based on the use of reduced order modeling, in particular the construction of a parametric solution by employing a non-intrusive formulation of the Proper Generalized Decomposition, combined with a powerful phase-angle unwrapping strategy for accurately addressing the electric and magnetic fields interpolation, contributing to improve the design, the calibration and the operational use of those systems.


2019 ◽  
Vol 100 (5) ◽  
Author(s):  
Sk. M. Rahman ◽  
S. Pawar ◽  
O. San ◽  
A. Rasheed ◽  
T. Iliescu

AIAA Journal ◽  
2020 ◽  
Vol 58 (2) ◽  
pp. 618-632 ◽  
Author(s):  
Jiayang Xu ◽  
Cheng Huang ◽  
Karthik Duraisamy

Author(s):  
Ronnie Bladh ◽  
Matthew P. Castanier ◽  
Christophe Pierre

In this paper, the component-mode-based methods formulated in the companion paper (Part I: Theoretical Models) are applied to the dynamic analysis of two example finite element models of bladed disks. Free and forced responses for both tuned and mistuned rotors are considered. Comprehensive comparisons are made among the techniques using full system finite element solutions as a benchmark. The accurate capture of eigenfrequency veering regions is of critical importance for obtaining high-fidelity predictions of the rotor’s sensitivity to mistuning. Therefore, particular attention is devoted to this subject. It is shown that the Craig-Bampton component mode synthesis (CMS) technique is robust and yields highly reliable results. However, this is achieved at considerable computational cost due to the retained component interface degrees of freedom (DOF). It is demonstrated that this problem is alleviated by a secondary modal analysis reduction technique (SMART). In addition, a non-CMS mistuning projection method is considered. Although this method is elegant and accurate, it is seen that it lacks the versatility and efficiency of the CMS-based SMART. Overall, this work shows that significant improvements on the accuracy and efficiency of current reduced order modeling methods are possible.


Sign in / Sign up

Export Citation Format

Share Document