scholarly journals A Bayesian estimation method for variational phase-field fracture problems

2020 ◽  
Vol 66 (4) ◽  
pp. 827-849 ◽  
Author(s):  
Amirreza Khodadadian ◽  
Nima Noii ◽  
Maryam Parvizi ◽  
Mostafa Abbaszadeh ◽  
Thomas Wick ◽  
...  

Abstract In this work, we propose a parameter estimation framework for fracture propagation problems. The fracture problem is described by a phase-field method. Parameter estimation is realized with a Bayesian approach. Here, the focus is on uncertainties arising in the solid material parameters and the critical energy release rate. A reference value (obtained on a sufficiently refined mesh) as the replacement of measurement data will be chosen, and their posterior distribution is obtained. Due to time- and mesh dependencies of the problem, the computational costs can be high. Using Bayesian inversion, we solve the problem on a relatively coarse mesh and fit the parameters. In several numerical examples our proposed framework is substantiated and the obtained load-displacement curves, that are usually the target functions, are matched with the reference values.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haifeng Li ◽  
Wei Wang ◽  
Yajun Cao ◽  
Shifan Liu

The phase-field method is a widely used technique to simulate crack initiation, propagation, and coalescence without the need to trace the fracture surface. In the phase-field theory, the energy to create a fracture surface per unit area is equal to the critical energy release rate. Therefore, the precise definition of the crack-driving part is the key to simulate crack propagation. In this work, we propose a modified phase-field model to capture the complex crack propagation, in which the elastic strain energy is decomposed into volumetric-deviatoric energy parts. Because of the volumetric-deviatoric energy split, we introduce a novel form of the crack-driving energy to simulate mixed-mode fracture. Furthermore, a new degradation function is proposed to simulate crack processes in brittle materials with different degradation rates. The proposed model is implemented by a staggered algorithm and to validate the performance of the phase-field modelling, and several numerical examples are constructed under plane strain condition. All the presented examples demonstrate the capability of the proposed approach in solving problems of brittle fracture propagation.


SAGE Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 215824402110269
Author(s):  
Lang Liang

The Bass model is the most popular model for forecasting the diffusion process of a new product. However, the controlling parameters in it are unknown in practice and need to be determined in advance. Currently, the estimation of the controlling parameters has been approached by various techniques. In this case, a novel optimization-based parameter estimation (OPE) method for the Bass model is proposed in the theoretical framework of system dynamics ( SD). To do this, the SD model of the Bass differential equation is first established and then the corresponding optimization mathematical model is formulated by introducing the controlling parameters as design variable and the discrepancy of the adopter function to the reference value as objective function. Using the VENSIM software, the present SD optimization model is solved, and its effectiveness and accuracy are demonstrated by two examples: one involves the exact solution and another is related to the actual user diffusion problem from Chinese Mobile. The results show that the present OPE method can produce higher predicting accuracy of the controlling parameters than the nonlinear weighted least squares method and the genetic algorithms. Moreover, the reliability interval of the estimated parameters and the goodness of fitting of the optimal results are given as well to further demonstrate the accuracy of the present OPE method.


2021 ◽  
Vol 26 ◽  
pp. 102150
Author(s):  
Dong-Cho Kim ◽  
Tomo Ogura ◽  
Ryosuke Hamada ◽  
Shotaro Yamashita ◽  
Kazuyoshi Saida

Author(s):  
Bo Yin ◽  
Johannes Storm ◽  
Michael Kaliske

AbstractThe promising phase-field method has been intensively studied for crack approximation in brittle materials. The realistic representation of material degradation at a fully evolved crack is still one of the main challenges. Several energy split formulations have been postulated to describe the crack evolution physically. A recent approach based on the concept of representative crack elements (RCE) in Storm et al. (The concept of representative crack elements (RCE) for phase-field fracture: anisotropic elasticity and thermo-elasticity. Int J Numer Methods Eng 121:779–805, 2020) introduces a variational framework to derive the kinematically consistent material degradation. The realistic material degradation is further tested using the self-consistency condition, which is particularly compared to a discrete crack model. This work extends the brittle RCE phase-field modeling towards rate-dependent fracture evolution in a viscoelastic continuum. The novelty of this paper is taking internal variables due to viscoelasticity into account to determine the crack deformation state. Meanwhile, a transient extension from Storm et al. (The concept of representative crack elements (RCE) for phase-field fracture: anisotropic elasticity and thermo-elasticity. Int J Numer Methods Eng 121:779–805, 2020) is also considered. The model is derived thermodynamic-consistently and implemented into the FE framework. Several representative numerical examples are investigated, and consequently, the according findings and potential perspectives are discussed to close this paper.


2011 ◽  
Vol 415-417 ◽  
pp. 1482-1485
Author(s):  
Chuang Gao Huang ◽  
Ying Jun Gao ◽  
Li Lin Huang ◽  
Jun Long Tian

The second phase nucleation and precipitation around the edge dislocation are studied using phase-field method. A new free energy function is established. The simulation results are in good agreement with that of theory of dislocation and theory of non-uniform nucleation.


Sign in / Sign up

Export Citation Format

Share Document