scholarly journals A linear-elasticity-based mesh moving method with no cycle-to-cycle accumulated distortion

Author(s):  
Patrícia Tonon ◽  
Rodolfo André Kuche Sanches ◽  
Kenji Takizawa ◽  
Tayfun E. Tezduyar

AbstractGood mesh moving methods are always part of what makes moving-mesh methods good in computation of flow problems with moving boundaries and interfaces, including fluid–structure interaction. Moving-mesh methods, such as the space–time (ST) and arbitrary Lagrangian–Eulerian (ALE) methods, enable mesh-resolution control near solid surfaces and thus high-resolution representation of the boundary layers. Mesh moving based on linear elasticity and mesh-Jacobian-based stiffening (MJBS) has been in use with the ST and ALE methods since 1992. In the MJBS, the objective is to stiffen the smaller elements, which are typically placed near solid surfaces, more than the larger ones, and this is accomplished by altering the way we account for the Jacobian of the transformation from the element domain to the physical domain. In computing the mesh motion between time levels $$t_n$$ t n and $$t_{n+1}$$ t n + 1 with the linear-elasticity equations, the most common option is to compute the displacement from the configuration at $$t_n$$ t n . While this option works well for most problems, because the method is path-dependent, it involves cycle-to-cycle accumulated mesh distortion. The back-cycle-based mesh moving (BCBMM) method, introduced recently with two versions, can remedy that. In the BCBMM, there is no cycle-to-cycle accumulated distortion. In this article, for the first time, we present mesh moving test computations with the BCBMM. We also introduce a version we call “half-cycle-based mesh moving” (HCBMM) method, and that is for computations where the boundary or interface motion in the second half of the cycle consists of just reversing the steps in the first half and we want the mesh to behave the same way. We present detailed 2D and 3D test computations with finite element meshes, using as the test case the mesh motion associated with wing pitching. The computations show that all versions of the BCBMM perform well, with no cycle-to-cycle accumulated distortion, and with the HCBMM, as the wing in the second half of the cycle just reverses its motion steps in the first half, the mesh behaves the same way.

2012 ◽  
Vol 4 (06) ◽  
pp. 685-702 ◽  
Author(s):  
Zhicheng Hu ◽  
Heyu Wang

AbstractThis paper deals with the application of a moving mesh method for kinetic/hydrodynamic coupling model in two dimensions. With some criteria, the domain is dynamically decomposed into three parts: kinetic regions where fluids are far from equilibrium, hydrodynamic regions where fluids are near thermody-namical equilibrium and buffer regions which are used as a smooth transition. The Boltzmann-BGK equation is solved in kinetic regions, while Euler equations in hydrodynamic regions and both equations in buffer regions. By a well defined monitor function, our moving mesh method smoothly concentrate the mesh grids to the regions containing rapid variation of the solutions. In each moving mesh step, the solutions are conservatively updated to the new mesh and the cut-off function is rebuilt first to consist with the region decomposition after the mesh motion. In such a framework, the evolution of the hybrid model and the moving mesh procedure can be implemented independently, therefore keep the advantages of both approaches. Numerical examples are presented to demonstrate the efficiency of the method.


Author(s):  
Kenneth C. Walls ◽  
David L. Littlefield

Abstract Realistic and accurate modeling of contact for problems involving large deformations and severe distortions presents a host of computational challenges. Due to their natural description of surfaces, Lagrangian finite element methods are traditionally used for problems involving sliding contact. However, problems such as those involving ballistic penetrations, blast-structure interactions, and vehicular crash dynamics, can result in elements developing large aspect ratios, twisting, or even inverting. For this reason, Eulerian, and by extension Arbitrary Lagrangian-Eulerian (ALE), methods have become popular. However, additional complexities arise when these methods permit multiple materials to occupy a single finite element.


2015 ◽  
Vol 37 (2) ◽  
pp. B215-B238 ◽  
Author(s):  
Craig S. MacDonald ◽  
John A. Mackenzie ◽  
Alison Ramage ◽  
Christopher J. P. Newton

Sign in / Sign up

Export Citation Format

Share Document