Extinction risk assessment of a Patagonian ungulate using population dynamics models under climate change scenarios

2020 ◽  
Vol 64 (11) ◽  
pp. 1847-1855
Author(s):  
Carlos Riquelme ◽  
Sergio A. Estay ◽  
Rafael Contreras ◽  
Paulo Corti
2018 ◽  
Vol 44 ◽  
pp. 43-49 ◽  
Author(s):  
Fabio Attorre ◽  
Thomas Abeli ◽  
Gianluigi Bacchetta ◽  
Alessio Farcomeni ◽  
Giuseppe Fenu ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 195 ◽  
Author(s):  
Konstantinos Kougioumoutzis ◽  
Ioannis P. Kokkoris ◽  
Maria Panitsa ◽  
Arne Strid ◽  
Panayotis Dimopoulos

Human-induced biodiversity decline has been on the rise for the past 250 years, due to various causes. What is equally troubling, is that we are unaware which plants are threatened and where they occur. Thus, we are far from reaching Aichi Biodiversity Target 2, i.e., assessing the extinction risk of most species. To that end, based on an extensive occurrence dataset, we performed an extinction risk assessment according to the IUCN Criteria A and B for all the endemic plant taxa occurring in Greece, one of the most biodiverse countries in Europe, in a phylogenetically-informed framework and identified the areas needing conservation prioritization. Several of the Greek endemics are threatened with extinction and fourteen endemics need to be prioritized, as they are evolutionary distinct and globally endangered. Mt. Gramos is identified as the most important conservation hotspot in Greece. However, a significant portion of the identified conservation hotspots is not included in any designated Greek protected area, meaning that the Greek protected areas network might need to be at least partially redesigned. In the Anthropocene era, where climate and land-use change are projected to alter biodiversity patterns and may force many species to extinction, our assessment provides the baseline for future conservation research, ecosystem services maintenance, and might prove crucial for the timely, systematic and effective aversion of plant extinctions in Greece.


1998 ◽  
Vol 194 (1) ◽  
pp. 1-9 ◽  
Author(s):  
J.M. Cushing ◽  
R.F. Costantino ◽  
Brian Dennis ◽  
R.A. Desharnais ◽  
Shandelle M. Henson

2020 ◽  
Vol 27 (1) ◽  
pp. 008-016
Author(s):  
Verónica C. Andreo ◽  
Mauricio Lima ◽  
Jaime J. Polop ◽  
M. Cecilia Provensal

2014 ◽  
Vol 66 (3) ◽  
pp. 963-967
Author(s):  
You-Hua Chen

The relationships between areal sizes of high, intermediate, low, and total sum of habitats with low, intermediate and high suitability habitat ranges, and the International Union for Conservation of Nature (IUCN) threatened status of global terrestrial mammals were studied. Polyserial correlation analysis showed that all types of areal size closely and positively correlated with IUCN categories of threatened species. The results indicate that area-based extinction risk assessment is feasible and reliable in species? conservation prioritization. Furthermore, the partial polyserial correlation test indicates that significant correlations between the IUCN threatened status of species and range sizes of high, intermediate and low suitability habitats are not influenced by the polyserial correlation between IUCN threatened status and total suitability habitat range size. Thus, the prediction of species? extinction risks can be accurately fulfilled by evaluating the areal size of any one of total, high, intermediate or low suitability ranges. The present study implies that if the area size information of a totally suitable range is not available for species? extinction risk assessment, the usage of areal sizes from any parts of suitable habitats (high, intermediate or low) are effective surrogates.


Sign in / Sign up

Export Citation Format

Share Document