scholarly journals Designing a decompositional rule extraction algorithm for neural networks with bound decomposition tree

2007 ◽  
Vol 17 (3) ◽  
pp. 297-309 ◽  
Author(s):  
Jia Sheng Heh ◽  
Jen Cheng Chen ◽  
Maiga Chang
Author(s):  
Peter Grabusts

This paper describes a method of rule extraction from trained artificial neural networks. The statement of the problem is given. The aim of rule extraction procedure and suitable neural networks for rule extraction are outlined. The RULEX rule extraction algorithm is discussed that is based on the radial basis function (RBF) neural network. The extracted rules can help discover and analyze the rule set hidden in data sets. The paper contains an implementation example, which is shown through standalone IRIS data set.


Author(s):  
YOICHI HAYASHI

This paper presents theoretical and historical backgrounds related to neural network rule extraction. It also investigates approaches for neural network rule extraction by ensemble concepts. Bologna pointed out that although many authors had generated comprehensive models from individual networks, much less work had been done to explain ensembles of neural networks. This paper carefully surveyed the previous work on rule extraction from neural network ensembles since 1988. We are aware of three major research groups i.e., Bologna' group, Zhou' group and Hayashi' group. The reason of these situations is obvious. Since the structures of previous neural network ensembles were quite complicated, the research on the efficient rule extraction algorithm from neural network ensembles was few although their learning capability was extremely high. Thus, these issues make rule extraction algorithm for neural network ensemble difficult task. However, there is a practical need for new ideas for neural network ensembles in order to realize the extremely high-performance needs of various rule extraction problems in real life. This paper successively explain nature of artificial neural networks, origin of neural network rule extraction, incorporating fuzziness in neural network rule extraction, theoretical foundation of neural network rule extraction, computational complexity of neural network rule extraction, neuro-fuzzy hybridization, previous rule extraction from neural network ensembles and difficulties of previous neural network ensembles. Next, this paper address three principles of proposed neural network rule extraction: to increase recognition rates, to extract rules from neural network ensembles, and to minimize the use of computing resources. We also propose an ensemble-recursive-rule extraction (E-Re-RX) by two or three standard backpropagation to train multi-layer perceptrons (MLPs), which enabled extremely high recognition accuracy and the extraction of comprehensible rules. Furthermore, this enabled rule extraction that resulted in fewer rules than those in previously proposed methods. This paper summarizes experimental results of rule extraction using E-Re-RX by multiple standard backpropagation MLPs and provides deep discussions. The results make it possible for the output from a neural network ensemble to be in the form of rules, thus open the "black box" of trained neural networks ensembles. Finally, we provide valuable conclusions and as future work, three open questions on the E-Re-RX algorithm.


Author(s):  
Rudy Setiono ◽  
Arnulfo Azcarraga ◽  
Yoichi Hayashi

In this paper, we present an approach for sample selection using an ensemble of neural networks for credit scoring. The ensemble determines samples that can be considered outliers by checking the classification accuracy of the neural networks on the original training data samples. Those samples that are consistently misclassified by the neural networks in the ensemble are removed from the training dataset. The remaining data samples are then used to train and prune another neural network for rule extraction. Our experimental results on publicly available benchmark credit scoring datasets show that by eliminating the outliers, we obtain neural networks with higher predictive accuracy and simpler in structure compared to the networks that are trained with the original dataset. A rule extraction algorithm is applied to generate comprehensible rules from the neural networks. The extracted rules are more concise than the rules generated from networks that have been trained using the original datasets.


1999 ◽  
Vol 20 (3) ◽  
pp. 273-280 ◽  
Author(s):  
R. Krishnan ◽  
G. Sivakumar ◽  
P. Bhattacharya

Sign in / Sign up

Export Citation Format

Share Document