EXTRACTING RULES FROM TRAINED RBF NEURAL NETWORKS

Author(s):  
Peter Grabusts

This paper describes a method of rule extraction from trained artificial neural networks. The statement of the problem is given. The aim of rule extraction procedure and suitable neural networks for rule extraction are outlined. The RULEX rule extraction algorithm is discussed that is based on the radial basis function (RBF) neural network. The extracted rules can help discover and analyze the rule set hidden in data sets. The paper contains an implementation example, which is shown through standalone IRIS data set.

2020 ◽  
Vol 6 ◽  
Author(s):  
Jaime de Miguel Rodríguez ◽  
Maria Eugenia Villafañe ◽  
Luka Piškorec ◽  
Fernando Sancho Caparrini

Abstract This work presents a methodology for the generation of novel 3D objects resembling wireframes of building types. These result from the reconstruction of interpolated locations within the learnt distribution of variational autoencoders (VAEs), a deep generative machine learning model based on neural networks. The data set used features a scheme for geometry representation based on a ‘connectivity map’ that is especially suited to express the wireframe objects that compose it. Additionally, the input samples are generated through ‘parametric augmentation’, a strategy proposed in this study that creates coherent variations among data by enabling a set of parameters to alter representative features on a given building type. In the experiments that are described in this paper, more than 150 k input samples belonging to two building types have been processed during the training of a VAE model. The main contribution of this paper has been to explore parametric augmentation for the generation of large data sets of 3D geometries, showcasing its problems and limitations in the context of neural networks and VAEs. Results show that the generation of interpolated hybrid geometries is a challenging task. Despite the difficulty of the endeavour, promising advances are presented.


2017 ◽  
Vol 16 (06) ◽  
pp. 1707-1727 ◽  
Author(s):  
Morteza Mashayekhi ◽  
Robin Gras

Decision trees are examples of easily interpretable models whose predictive accuracy is normally low. In comparison, decision tree ensembles (DTEs) such as random forest (RF) exhibit high predictive accuracy while being regarded as black-box models. We propose three new rule extraction algorithms from DTEs. The RF[Formula: see text]DHC method, a hill climbing method with downhill moves (DHC), is used to search for a rule set that decreases the number of rules dramatically. In the RF[Formula: see text]SGL and RF[Formula: see text]MSGL methods, the sparse group lasso (SGL) method, and the multiclass SGL (MSGL) method are employed respectively to find a sparse weight vector corresponding to the rules generated by RF. Experimental results with 24 data sets show that the proposed methods outperform similar state-of-the-art methods, in terms of human comprehensibility, by greatly reducing the number of rules and limiting the number of antecedents in the retained rules, while preserving the same level of accuracy.


2020 ◽  
Vol 34 (04) ◽  
pp. 5620-5627 ◽  
Author(s):  
Murat Sensoy ◽  
Lance Kaplan ◽  
Federico Cerutti ◽  
Maryam Saleki

Deep neural networks are often ignorant about what they do not know and overconfident when they make uninformed predictions. Some recent approaches quantify classification uncertainty directly by training the model to output high uncertainty for the data samples close to class boundaries or from the outside of the training distribution. These approaches use an auxiliary data set during training to represent out-of-distribution samples. However, selection or creation of such an auxiliary data set is non-trivial, especially for high dimensional data such as images. In this work we develop a novel neural network model that is able to express both aleatoric and epistemic uncertainty to distinguish decision boundary and out-of-distribution regions of the feature space. To this end, variational autoencoders and generative adversarial networks are incorporated to automatically generate out-of-distribution exemplars for training. Through extensive analysis, we demonstrate that the proposed approach provides better estimates of uncertainty for in- and out-of-distribution samples, and adversarial examples on well-known data sets against state-of-the-art approaches including recent Bayesian approaches for neural networks and anomaly detection methods.


2021 ◽  
pp. 1-17
Author(s):  
Luis Sa-Couto ◽  
Andreas Wichert

Abstract Convolutional neural networks (CNNs) evolved from Fukushima's neocognitron model, which is based on the ideas of Hubel and Wiesel about the early stages of the visual cortex. Unlike other branches of neocognitron-based models, the typical CNN is based on end-to-end supervised learning by backpropagation and removes the focus from built-in invariance mechanisms, using pooling not as a way to tolerate small shifts but as a regularization tool that decreases model complexity. These properties of end-to-end supervision and flexibility of structure allow the typical CNN to become highly tuned to the training data, leading to extremely high accuracies on typical visual pattern recognition data sets. However, in this work, we hypothesize that there is a flip side to this capability, a hidden overfitting. More concretely, a supervised, backpropagation based CNN will outperform a neocognitron/map transformation cascade (MTCCXC) when trained and tested inside the same data set. Yet if we take both models trained and test them on the same task but on another data set (without retraining), the overfitting appears. Other neocognitron descendants like the What-Where model go in a different direction. In these models, learning remains unsupervised, but more structure is added to capture invariance to typical changes. Knowing that, we further hypothesize that if we repeat the same experiments with this model, the lack of supervision may make it worse than the typical CNN inside the same data set, but the added structure will make it generalize even better to another one. To put our hypothesis to the test, we choose the simple task of handwritten digit classification and take two well-known data sets of it: MNIST and ETL-1. To try to make the two data sets as similar as possible, we experiment with several types of preprocessing. However, regardless of the type in question, the results align exactly with expectation.


Author(s):  
Fang Chu ◽  
Lipo Wang

Accurate diagnosis of cancers is of great importance for doctors to choose a proper treatment. Furthermore, it also plays a key role in the searching for the pathology of cancers and drug discovery. Recently, this problem attracts great attention in the context of microarray technology. Here, we apply radial basis function (RBF) neural networks to this pattern recognition problem. Our experimental results in some well-known microarray data sets indicate that our method can obtain very high accuracy with a small number of genes.


2012 ◽  
Vol 490-495 ◽  
pp. 688-692
Author(s):  
Zhong Biao Sheng ◽  
Xiao Rong Tong

Three means to realize function approach such as the interpolation approach, fitting approach as well as the neural network approach are discussed based on Matlab to meet the demand of data processing in engineering application. Based on basic principle of introduction, realization methods to non-linear are researched using interpolation function and fitting function in Matlab with example. It mainly studies the RBF neural networks and the training method. RBF neural network to proximate nonlinear function is designed and the desired effect is achieved through the training and simulation of network. As is shown from the simulation results, RBF network has strong nonlinear processing and approximating features, and RBF network model has the characteristics of high precision, fast learning speed for the prediction.


2001 ◽  
Vol 11 (03) ◽  
pp. 247-255 ◽  
Author(s):  
GUIDO BOLOGNA

The problem of rule extraction from neural networks is NP-hard. This work presents a new technique to extract "if-then-else" rules from ensembles of DIMLP neural networks. Rules are extracted in polynomial time with respect to the dimensionality of the problem, the number of examples, and the size of the resulting network. Further, the degree of matching between extracted rules and neural network responses is 100%. Ensembles of DIMLP networks were trained on four data sets in the public domain. Extracted rules were on average significantly more accurate than those extracted from C4.5 decision trees.


2019 ◽  
Vol 52 (4) ◽  
pp. 854-863 ◽  
Author(s):  
Brendan Sullivan ◽  
Rick Archibald ◽  
Jahaun Azadmanesh ◽  
Venu Gopal Vandavasi ◽  
Patricia S. Langan ◽  
...  

Neutron crystallography offers enormous potential to complement structures from X-ray crystallography by clarifying the positions of low-Z elements, namely hydrogen. Macromolecular neutron crystallography, however, remains limited, in part owing to the challenge of integrating peak shapes from pulsed-source experiments. To advance existing software, this article demonstrates the use of machine learning to refine peak locations, predict peak shapes and yield more accurate integrated intensities when applied to whole data sets from a protein crystal. The artificial neural network, based on the U-Net architecture commonly used for image segmentation, is trained using about 100 000 simulated training peaks derived from strong peaks. After 100 training epochs (a round of training over the whole data set broken into smaller batches), training converges and achieves a Dice coefficient of around 65%, in contrast to just 15% for negative control data sets. Integrating whole peak sets using the neural network yields improved intensity statistics compared with other integration methods, including k-nearest neighbours. These results demonstrate, for the first time, that neural networks can learn peak shapes and be used to integrate Bragg peaks. It is expected that integration using neural networks can be further developed to increase the quality of neutron, electron and X-ray crystallography data.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6156
Author(s):  
Stefan Hensel ◽  
Marin B. Marinov ◽  
Michael Koch ◽  
Dimitar Arnaudov

This paper presents a systematic approach for accurate short-time cloud coverage prediction based on a machine learning (ML) approach. Based on a newly built omnidirectional ground-based sky camera system, local training and evaluation data sets were created. These were used to train several state-of-the-art deep neural networks for object detection and segmentation. For this purpose, the camera-generated a full hemispherical image every 30 min over two months in daylight conditions with a fish-eye lens. From this data set, a subset of images was selected for training and evaluation according to various criteria. Deep neural networks, based on the two-stage R-CNN architecture, were trained and compared with a U-net segmentation approach implemented by CloudSegNet. All chosen deep networks were then evaluated and compared according to the local situation.


Sign in / Sign up

Export Citation Format

Share Document