Smart heterogeneous precision agriculture using wireless sensor network based on extended Kalman filter

2018 ◽  
Vol 31 (9) ◽  
pp. 5653-5669 ◽  
Author(s):  
Yousef E. M. Hamouda ◽  
Mohammed M. Msallam
Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6634
Author(s):  
Long Cheng ◽  
Sihang Huang ◽  
Mingkun Xue ◽  
Yangyang Bi

With the rapid development of information and communication technology, the wireless sensor network (WSN) has shown broad application prospects in a growing number of fields. The non-line-of-sight (NLOS) problem is the main challenge to WSN localization, which seriously reduces the positioning accuracy. In this paper, a robust localization algorithm based on NLOS identification and classification filtering for WSN is proposed to solve this problem. It is difficult to use a single filter to filter out NLOS noise in all cases since NLOS cases are extremely complicated in real scenarios. Therefore, in order to improve the robustness, we first propose a NLOS identification strategy to detect the severity of NLOS, and then NLOS situations are divided into two categories according to the severity: mild NLOS and severe NLOS. Secondly, classification filtering is performed to obtain respective position estimates. An extended Kalman filter is applied to filter line-of-sight (LOS) noise. For mild NLOS, the large outliers are clipped by the redescending score function in the robust extended Kalman filter, yielding superior performance. For severe NLOS, a severe NLOS mitigation algorithm based on LOS reconstruction is proposed, in which the average value of NLOS error is estimated and the measurements are reconstructed and corrected for subsequent positioning. Finally, an interactive multiple model algorithm is employed to obtain the final positioning result by weighting the position estimation of LOS and NLOS. Simulation and experimental results show that the proposed algorithm can effectively suppress NLOS error and obtain higher positioning accuracy when compared with existing algorithms.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1693
Author(s):  
Chanchan Du ◽  
Lixin Zhang ◽  
Xiao Ma ◽  
Xiaokang Lou ◽  
Yongchao Shan ◽  
...  

Scientific researchers have applied newly developed technologies, such as sensors and actuators, to different fields, including environmental monitoring, traffic management, and precision agriculture. Using agricultural technology to assist crop fertilization is an important research innovation that can not only reduce the workload of farmers, but also reduce resource waste and soil pollution. This paper describes the design and development of a water-fertilizer control system based on the soil conductivity threshold. The system uses a low-cost wireless sensor network as a data collection and transmission tool and transmits the data to the decision support system. The decision support system considers the change in soil electrical conductivity (EC) and moisture content to guide the application of water-fertilizer, and then improves the fertilization accuracy of the water-fertilizer control system. In the experiment, the proposed water-fertilizer control system was tested, and it was concluded that, compared with the existing traditional water-fertilizer integration control system, the amount of fertilizer used by the system was reduced by 10.89% on average, and it could save 0.76–0.87 tons of fertilizer throughout the whole growth period of cotton.


Sign in / Sign up

Export Citation Format

Share Document