scholarly journals EchoFakeD: improving fake news detection in social media with an efficient deep neural network

Author(s):  
Rohit Kumar Kaliyar ◽  
Anurag Goswami ◽  
Pratik Narang
2017 ◽  
Vol 25 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Jiaheng Xie ◽  
Xiao Liu ◽  
Daniel Dajun Zeng

Abstract Objective Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers’ e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media. Methods Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network. Results Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed. Conclusion Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications.


News is a routine in everyone's life. It helps in enhancing the knowledge on what happens around the world. Fake news is a fictional information madeup with the intension to delude and hence the knowledge acquired becomes of no use. As fake news spreads extensively it has a negative impact in the society and so fake news detection has become an emerging research area. The paper deals with a solution to fake news detection using the methods, deep learning and Natural Language Processing. The dataset is trained using deep neural network. The dataset needs to be well formatted before given to the network which is made possible using the technique of Natural Language Processing and thus predicts whether a news is fake or not.


Author(s):  
Feng Qian ◽  
Chengyue Gong ◽  
Karishma Sharma ◽  
Yan Liu

Fake news on social media is a major challenge and studies have shown that fake news can propagate exponentially quickly in early stages. Therefore, we focus on early detection of fake news, and consider that only news article text is available at the time of detection, since additional information such as user responses and propagation patterns can be obtained only after the news spreads. However, we find historical user responses to previous articles are available and can be treated as soft semantic labels, that enrich the binary label of an article, by providing insights into why the article must be labeled as fake. We propose a novel Two-Level Convolutional Neural Network with User Response Generator (TCNN-URG) where TCNN captures semantic information from article text by representing it at the sentence and word level, and URG learns a generative model of user response to article text from historical user responses which it can use to generate responses to new articles in order to assist fake news detection. We conduct experiments on one available dataset and a larger dataset collected by ourselves. Experimental results show that TCNN-URG outperforms the baselines based on prior approaches that detect fake news from article text alone.


2021 ◽  
pp. 016555152098548
Author(s):  
Anastasia Giachanou ◽  
Bilal Ghanem ◽  
Paolo Rosso

The rise of social media has offered a fast and easy way for the propagation of conspiracy theories and other types of disinformation. Despite the research attention that has received, fake news detection remains an open problem and users keep sharing articles that contain false statements but which they consider real. In this article, we focus on the role of users in the propagation of conspiracy theories that is a specific type of disinformation. First, we compare profile and psycho-linguistic patterns of online users that tend to propagate posts that support conspiracy theories and of those who propagate posts that refute them. To this end, we perform a comparative analysis over various profile, psychological and linguistic characteristics using social media texts of users that share posts about conspiracy theories. Then, we compare the effectiveness of those characteristics for predicting whether a user is a conspiracy propagator or not. In addition, we propose ConspiDetector, a model that is based on a convolutional neural network (CNN) and which combines word embeddings with psycho-linguistic characteristics extracted from the tweets of users to detect conspiracy propagators. The results show that ConspiDetector can improve the performance in detecting conspiracy propagators by 8.82% compared with the CNN baseline with regard to F1-metric.


Sign in / Sign up

Export Citation Format

Share Document