DeepFakE: improving fake news detection using tensor decomposition-based deep neural network

Author(s):  
Rohit Kumar Kaliyar ◽  
Anurag Goswami ◽  
Pratik Narang

News is a routine in everyone's life. It helps in enhancing the knowledge on what happens around the world. Fake news is a fictional information madeup with the intension to delude and hence the knowledge acquired becomes of no use. As fake news spreads extensively it has a negative impact in the society and so fake news detection has become an emerging research area. The paper deals with a solution to fake news detection using the methods, deep learning and Natural Language Processing. The dataset is trained using deep neural network. The dataset needs to be well formatted before given to the network which is made possible using the technique of Natural Language Processing and thus predicts whether a news is fake or not.


Author(s):  
Sneha Singhania ◽  
Nigel Fernandez ◽  
Shrisha Rao

Author(s):  
David T. Wang ◽  
Brady Williamson ◽  
Thomas Eluvathingal ◽  
Bruce Mahoney ◽  
Jennifer Scheler

Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


Sign in / Sign up

Export Citation Format

Share Document