scholarly journals Fake News Detection using Deep Learning

News is a routine in everyone's life. It helps in enhancing the knowledge on what happens around the world. Fake news is a fictional information madeup with the intension to delude and hence the knowledge acquired becomes of no use. As fake news spreads extensively it has a negative impact in the society and so fake news detection has become an emerging research area. The paper deals with a solution to fake news detection using the methods, deep learning and Natural Language Processing. The dataset is trained using deep neural network. The dataset needs to be well formatted before given to the network which is made possible using the technique of Natural Language Processing and thus predicts whether a news is fake or not.

10.2196/23230 ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. e23230
Author(s):  
Pei-Fu Chen ◽  
Ssu-Ming Wang ◽  
Wei-Chih Liao ◽  
Lu-Cheng Kuo ◽  
Kuan-Chih Chen ◽  
...  

Background The International Classification of Diseases (ICD) code is widely used as the reference in medical system and billing purposes. However, classifying diseases into ICD codes still mainly relies on humans reading a large amount of written material as the basis for coding. Coding is both laborious and time-consuming. Since the conversion of ICD-9 to ICD-10, the coding task became much more complicated, and deep learning– and natural language processing–related approaches have been studied to assist disease coders. Objective This paper aims at constructing a deep learning model for ICD-10 coding, where the model is meant to automatically determine the corresponding diagnosis and procedure codes based solely on free-text medical notes to improve accuracy and reduce human effort. Methods We used diagnosis records of the National Taiwan University Hospital as resources and apply natural language processing techniques, including global vectors, word to vectors, embeddings from language models, bidirectional encoder representations from transformers, and single head attention recurrent neural network, on the deep neural network architecture to implement ICD-10 auto-coding. Besides, we introduced the attention mechanism into the classification model to extract the keywords from diagnoses and visualize the coding reference for training freshmen in ICD-10. Sixty discharge notes were randomly selected to examine the change in the F1-score and the coding time by coders before and after using our model. Results In experiments on the medical data set of National Taiwan University Hospital, our prediction results revealed F1-scores of 0.715 and 0.618 for the ICD-10 Clinical Modification code and Procedure Coding System code, respectively, with a bidirectional encoder representations from transformers embedding approach in the Gated Recurrent Unit classification model. The well-trained models were applied on the ICD-10 web service for coding and training to ICD-10 users. With this service, coders can code with the F1-score significantly increased from a median of 0.832 to 0.922 (P<.05), but not in a reduced interval. Conclusions The proposed model significantly improved the F1-score but did not decrease the time consumed in coding by disease coders.


2020 ◽  
Author(s):  
Pei-Fu Chen ◽  
Ssu-Ming Wang ◽  
Wei-Chih Liao ◽  
Lu-Cheng Kuo ◽  
Kuan-Chih Chen ◽  
...  

BACKGROUND The International Classification of Diseases (ICD) code is widely used as the reference in medical system and billing purposes. However, classifying diseases into ICD codes still mainly relies on humans reading a large amount of written material as the basis for coding. Coding is both laborious and time-consuming. Since the conversion of ICD-9 to ICD-10, the coding task became much more complicated, and deep learning– and natural language processing–related approaches have been studied to assist disease coders. OBJECTIVE This paper aims at constructing a deep learning model for ICD-10 coding, where the model is meant to automatically determine the corresponding diagnosis and procedure codes based solely on free-text medical notes to improve accuracy and reduce human effort. METHODS We used diagnosis records of the National Taiwan University Hospital as resources and apply natural language processing techniques, including global vectors, word to vectors, embeddings from language models, bidirectional encoder representations from transformers, and single head attention recurrent neural network, on the deep neural network architecture to implement ICD-10 auto-coding. Besides, we introduced the attention mechanism into the classification model to extract the keywords from diagnoses and visualize the coding reference for training freshmen in ICD-10. Sixty discharge notes were randomly selected to examine the change in the F<sub>1</sub>-score and the coding time by coders before and after using our model. RESULTS In experiments on the medical data set of National Taiwan University Hospital, our prediction results revealed F<sub>1</sub>-scores of 0.715 and 0.618 for the ICD-10 Clinical Modification code and Procedure Coding System code, respectively, with a <i>bidirectional encoder representations from transformers</i> embedding approach in the Gated Recurrent Unit classification model. The well-trained models were applied on the ICD-10 web service for coding and training to ICD-10 users. With this service, coders can code with the F<sub>1</sub>-score significantly increased from a median of 0.832 to 0.922 (<i>P</i>&lt;.05), but not in a reduced interval. CONCLUSIONS The proposed model significantly improved the F<sub>1</sub>-score but did not decrease the time consumed in coding by disease coders.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sourabh Sharma ◽  
Saloni Yadav ◽  
Vaishali Kalra

: Seemingly in the contemporary era data is the new currency. Facing the exponential explosion of data through its various online sources, there arises a need for the industry to tap into this source. The art of ascribing sentiment to a piece of text is Sentiment Analysis making it relevant to a wide array of fields. The world has witnessed assortments of a wide family of coronaviruses, 229E and NL63 being the alpha coronaviruses and OC43 & HKU1 being the beta coronaviruses. A version of coronavirus MERS-CoV seemed to be identified in Saudi Arabia. This work focuses on the Deep Neural Network and Natural Language processing to diagnose depression in COVID-19 patients, and the model is trained with the depression labeled tagged dataset with an accuracy of 98%. The foundation of this work shall be instrumental in aiding the doctors in timely diagnosis and treatment of their patients.


Author(s):  
Uma Maheswari Sadasivam ◽  
Nitin Ganesan

Fake news is the word making more talk these days be it election, COVID 19 pandemic, or any social unrest. Many social websites have started to fact check the news or articles posted on their websites. The reason being these fake news creates confusion, chaos, misleading the community and society. In this cyber era, citizen journalism is happening more where citizens do the collection, reporting, dissemination, and analyse news or information. This means anyone can publish news on the social websites and lead to unreliable information from the readers' points of view as well. In order to make every nation or country safe place to live by holding a fair and square election, to stop spreading hatred on race, religion, caste, creed, also to have reliable information about COVID 19, and finally from any social unrest, we need to keep a tab on fake news. This chapter presents a way to detect fake news using deep learning technique and natural language processing.


Author(s):  
Tamanna Sharma ◽  
Anu Bajaj ◽  
Om Prakash Sangwan

Sentiment analysis is computational measurement of attitude, opinions, and emotions (like positive/negative) with the help of text mining and natural language processing of words and phrases. Incorporation of machine learning techniques with natural language processing helps in analysing and predicting the sentiments in more precise manner. But sometimes, machine learning techniques are incapable in predicting sentiments due to unavailability of labelled data. To overcome this problem, an advanced computational technique called deep learning comes into play. This chapter highlights latest studies regarding use of deep learning techniques like convolutional neural network, recurrent neural network, etc. in sentiment analysis.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Venkateswara Rao Kota ◽  
Shyamala Devi Munisamy

PurposeNeural network (NN)-based deep learning (DL) approach is considered for sentiment analysis (SA) by incorporating convolutional neural network (CNN), bi-directional long short-term memory (Bi-LSTM) and attention methods. Unlike the conventional supervised machine learning natural language processing algorithms, the authors have used unsupervised deep learning algorithms.Design/methodology/approachThe method presented for sentiment analysis is designed using CNN, Bi-LSTM and the attention mechanism. Word2vec word embedding is used for natural language processing (NLP). The discussed approach is designed for sentence-level SA which consists of one embedding layer, two convolutional layers with max-pooling, one LSTM layer and two fully connected (FC) layers. Overall the system training time is 30 min.FindingsThe method performance is analyzed using metrics like precision, recall, F1 score, and accuracy. CNN is helped to reduce the complexity and Bi-LSTM is helped to process the long sequence input text.Originality/valueThe attention mechanism is adopted to decide the significance of every hidden state and give a weighted sum of all the features fed as input.


2019 ◽  
Vol 277 ◽  
pp. 02004
Author(s):  
Middi Venkata Sai Rishita ◽  
Middi Appala Raju ◽  
Tanvir Ahmed Harris

Machine Translation is the translation of text or speech by a computer with no human involvement. It is a popular topic in research with different methods being created, like rule-based, statistical and examplebased machine translation. Neural networks have made a leap forward to machine translation. This paper discusses the building of a deep neural network that functions as a part of end-to-end translation pipeline. The completed pipeline would accept English text as input and return the French Translation. The project has three main parts which are preprocessing, creation of models and Running the model on English Text.


2021 ◽  
Vol 1 (7) ◽  
pp. 261-268
Author(s):  
Sukma Nindi Listyarini ◽  
Dimas Aryo Anggoro

Pemilihan kepala daerah 2020 menjadi kontroversi, sebab dilaksanakan ditengah pandemi  covid-19. Komentar muncul di berbagai lini media sosial seperti twitter. Banyak masyarakat yang setuju pilkada dilanjutkan, namun banyak juga yang perpendapat untuk menunda pilkada sampai masa pandemi berakhir. Melihat perbedaan pendapat seperti ini, perlu dilakukan analisis sentimen, dengan tujuan untuk memperoleh persepsi atau gambaran umum masyarakat terhadap penyelenggaraan pilkada 2020 saat pandemi covid-19. Sebanyak 500 tweet diperoleh dengan cara crawling data dari twitter API menggunakan library tweepy, bedasarkan keyword yang telah ditentukan. Dataset yang didapat diberi label ke dalam dua kelas, negatif dan positif. Penelitian ini mengusulkan pendekatan deep learning dengan algoritma Convolution Neural Network (CNN) untuk klasifikasi, yang terbukti efektif untuk tugas Natural Language Processing (NLP) dan mampu mencapai kinerja yang baik dalam klasifikasi kalimat. Percobaan dilakukan dengan menerapkan 4-layer convolutional dan mengamati pengaruh jumlah epoch terhadap akurasi model. Variasi epoch yang digunakan adalah 50, 75, 100.  Hasil dari penelitian menunjukkan bahwa, metode CNN dengan dataset pilkada ditengah pandemi mendapatkan akurasi tertinggi sebesar 90% dengan 4-layer convolutional dan 100 epoch. Didapatkan pula bahwa, semakin banyak epoch yang digunakan dalam model,  akurasi cenderung meningkat.


2021 ◽  
pp. 1-12
Author(s):  
Yonatan Belinkov

Abstract Probing classifiers have emerged as one of the prominent methodologies for interpreting and analyzing deep neural network models of natural language processing. The basic idea is simple —a classifier is trained to predict some linguistic property from a model's representations—and has been used to examine a wide variety of models and properties. However, recent studies have demonstrated various methodological limitations of this approach. This article critically reviews the probing classifiers framework, highlighting their promises, shortcomings, and advances.


2021 ◽  
Vol 45 (10) ◽  
Author(s):  
A. W. Olthof ◽  
P. M. A. van Ooijen ◽  
L. J. Cornelissen

AbstractIn radiology, natural language processing (NLP) allows the extraction of valuable information from radiology reports. It can be used for various downstream tasks such as quality improvement, epidemiological research, and monitoring guideline adherence. Class imbalance, variation in dataset size, variation in report complexity, and algorithm type all influence NLP performance but have not yet been systematically and interrelatedly evaluated. In this study, we investigate these factors on the performance of four types [a fully connected neural network (Dense), a long short-term memory recurrent neural network (LSTM), a convolutional neural network (CNN), and a Bidirectional Encoder Representations from Transformers (BERT)] of deep learning-based NLP. Two datasets consisting of radiologist-annotated reports of both trauma radiographs (n = 2469) and chest radiographs and computer tomography (CT) studies (n = 2255) were split into training sets (80%) and testing sets (20%). The training data was used as a source to train all four model types in 84 experiments (Fracture-data) and 45 experiments (Chest-data) with variation in size and prevalence. The performance was evaluated on sensitivity, specificity, positive predictive value, negative predictive value, area under the curve, and F score. After the NLP of radiology reports, all four model-architectures demonstrated high performance with metrics up to > 0.90. CNN, LSTM, and Dense were outperformed by the BERT algorithm because of its stable results despite variation in training size and prevalence. Awareness of variation in prevalence is warranted because it impacts sensitivity and specificity in opposite directions.


Sign in / Sign up

Export Citation Format

Share Document