GTCC-based BiLSTM deep-learning framework for respiratory sound classification using empirical mode decomposition

Author(s):  
S. Jayalakshmy ◽  
Gnanou Florence Sudha
2022 ◽  
Author(s):  
J.M. González-Sopeña

Abstract. In the last few years, wind power forecasting has established itself as an essential tool in the energy industry due to the increase of wind power penetration in the electric grid. This paper presents a wind power forecasting method based on ensemble empirical mode decomposition (EEMD) and deep learning. EEMD is employed to decompose wind power time series data into several intrinsic mode functions and a residual component. Afterwards, every intrinsic mode function is trained by means of a CNN-LSTM architecture. Finally, wind power forecast is obtained by adding the prediction of every component. Compared to the benchmark model, the proposed approach provides more accurate predictions for several time horizons. Furthermore, prediction intervals are modelled using quantile regression.


2017 ◽  
Vol 54 ◽  
pp. 246-255 ◽  
Author(s):  
Xueheng Qiu ◽  
Ye Ren ◽  
Ponnuthurai Nagaratnam Suganthan ◽  
Gehan A.J. Amaratunga

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yang Cao ◽  
Xiaokang Zhou ◽  
Ke Yan

Monitoring and prediction of ground settlement during tunnel construction are of great significance to ensure the safe and reliable operation of urban tunnel systems. Data-driven techniques combining artificial intelligence (AI) and sensor networks are popular methods in the field, which have several advantages, including high prediction accuracy, efficiency, and low cost. Deep learning, as one of the advanced techniques in AI, is demanded for the tunnel settlement forecasting problem. However, deep neural networks often require a large amount of training data. Due to the tunnel construction, the available training data samples are limited, and the data are univariate (i.e., containing only the settlement data). In response to the above problems, this research proposes a deep learning model that only requires limited number of training data for short-period prediction of the tunnel surface settlement. In the proposed complete ensemble empirical mode decomposition with adaptive noise long short term memory (CEEMDAN-LSTM model), single-dimensional data is divided into multidimensional data by CEEMDAN through the complete ensemble empirical mode decomposition. Each component is then predicted by a LSTM neural network and superimposed for obtaining the final prediction result. Experimental results show that, compared with existing machine learning techniques and algorithms, this deep learning method has higher prediction accuracy and acceptable computational efficiency. In the case of small samples, this method can significantly improve the accuracy of time series forecasting.


Sign in / Sign up

Export Citation Format

Share Document