scholarly journals Approximation of partial differential equations on compact resistance spaces

Author(s):  
Michael Hinz ◽  
Melissa Meinert

AbstractWe consider linear partial differential equations on resistance spaces that are uniformly elliptic and parabolic in the sense of quadratic forms and involve abstract gradient and divergence terms. Our main interest is to provide graph and metric graph approximations for their unique solutions. For families of equations with different coefficients on a single compact resistance space we prove that solutions have accumulation points with respect to the uniform convergence in space, provided that the coefficients remain bounded. If in a sequence of equations the coefficients converge suitably, the solutions converge uniformly along a subsequence. For the special case of local resistance forms on finitely ramified sets we also consider sequences of resistance spaces approximating the finitely ramified set from within. Under suitable assumptions on the coefficients (extensions of) linearizations of the solutions of equations on the approximating spaces accumulate or even converge uniformly along a subsequence to the solution of the target equation on the finitely ramified set. The results cover discrete and metric graph approximations, and both are discussed.

2009 ◽  
Vol 14 (4) ◽  
pp. 515-529 ◽  
Author(s):  
Abdul M. Siddiqui ◽  
Ali R. Ansari ◽  
Ahmed Ahmad ◽  
N. Ahmad

The aim of the present investigation is to study the properties of a Sisko fluid flowing between two intersecting planes. The problem is similar to Taylor's scraping problem for a viscous fluid. We determine the solution of the complicated set of non‐linear partial differential equations describing the flow analytically. The analysis is carried out in detail reflecting the effects of varying the angle of the scraper on the flow. In addition, the tangential and normal stress are also computed. We also show the well known Taylor scraper problem as a special case.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


1950 ◽  
Vol 17 (4) ◽  
pp. 377-380
Author(s):  
R. D. Mindlin ◽  
L. E. Goodman

Abstract A procedure is described for extending the method of separation of variables to the solution of beam-vibration problems with time-dependent boundary conditions. The procedure is applicable to a wide variety of time-dependent boundary-value problems in systems governed by linear partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document