Implications of U–Pb and Lu–Hf isotopic analysis of detrital zircons for the depositional age, provenance and tectonic setting of the Permian–Triassic Palaeotethyan Karakaya Complex, NW Turkey

2015 ◽  
Vol 105 (1) ◽  
pp. 7-38 ◽  
Author(s):  
Timur Ustaömer ◽  
Petek Ayda Ustaömer ◽  
Alastair H. F. Robertson ◽  
Axel Gerdes
2021 ◽  
Author(s):  
Deta Gasser ◽  
Tor Grenne ◽  
Bjørgunn Dalslåen ◽  
Trond Slagstad ◽  
David Roberts ◽  
...  

<p>U-Pb age spectra of detrital zircons are widely used to estimate maximum depositional ages (MDA) for sedimentary successions of various age. Different methods have been proposed for calculating an MDA. The most common are based on calculated ages of either the youngest single grain (YSG), the youngest grain cluster composed of three or more grains that overlap at 2σ (YGC 2σ), or the youngest graphical peak (YPP). Many of these methods produce MDAs consistent with biostratigraphic age or the radiometric age of volcanic horizons within the same unit; however, several studies have shown that MDA estimates based on detrital zircon can be younger than the true depositional age, particularly in active tectonic settings, indicating that the methods should be applied with care for successions where independent depositional age control is lacking.</p><p>In this contribution we present a compilation of 27 detrital zircon samples from Ordovician to Silurian strata from a part of the Trondheim Nappe Complex of the central Scandinavian Caledonides. The samples belong to six stratigraphically distinct units with independent age control from fossils, dated volcanic horizons or bracketing units of known age. These successions represent various marginal basins filled during the closing stages of the Iapetus Ocean in an overall active tectonic setting with detritus from both continental landmasses and Cambro-Ordovician island arcs. Shortly after deposition, the successions were folded and metamorphosed at up to greenschist facies during Taconian accretionary events and/or the Scandian continent-continent collision.</p><p>We calculated MDAs by the three methods YSG, YGC 2σ and YPP for all samples based on <sup>206</sup>Pb/<sup> 238</sup>U ages, applying a rigorous discordance filter of 5% (most studies use 10%), in order to use the most reliable analyses possible. Our analysis shows that the YSG MDA is up to 36 m.y. younger than the known depositional age for 17 of the 27 samples, with up to six individual grains giving too young age estimates in some samples. Hence, YSG MDA obviously does not provide a reliable MDA estimate. Of the YGC 2σ (weighted mean age) estimates, six are still significantly younger than known depositional age; and an additional seven are younger but overlap with the known depositional age when considering the maximum error on the YGC 2σ estimate. The only method which provides an MDA estimate within the age of known deposition or older for all samples is the YPP method.</p><p>Our results indicate that statistically robust estimates of MDA from detrital zircon data in such an active orogenic setting are provided only by the YPP method; both the YSG and the YGC 2σ methods provided unreliably young estimates even with a discordance filter of 5% (using a filter of only 10% makes the problem considerably worse). The spuriously young ages of up to six near-concordant grains in some samples is probably due to concealed lead loss, possibly caused by (fluid-assisted?) recrystallisation of zircon domains during regional greenschist-facies metamorphism shortly after deposition.</p>


1999 ◽  
Vol 36 (6) ◽  
pp. 945-966 ◽  
Author(s):  
Eva Zaleski ◽  
Otto van Breemen ◽  
Virginia L Peterson

Fifty million years of Archean evolution is recorded in the Manitouwadge greenstone belt and the Wawa-Quetico boundary region, from ca. 2720 Ma volcanism and subvolcanic plutonism associated with massive sulphide deposits and hydrothermal alteration zones, to 2689-2687 Ma and 2680-2677 Ma synkinematic plutonism. In the greenstone belt, greywackes were deposited after 2693 Ma, post-dating local volcanism by at least 25 Ma, and requiring that the volcanic-sedimentary contact is an unconformity or a fault. In migmatitic greywackes in the Quetico subprovince, detrital zircons limit the depositional age to <2690 Ma, permitting correlation of greywackes across the Wawa-Quetico subprovince boundary. Upward-facing inclined F2 folds that deform the volcanic-sedimentary contact are bracketed by the 2687 ± 2 Ma Loken Lake pluton, which shows strong D2 fabrics, and by 2680+4-3 Ma foliated granite which cuts D2 fabrics. Dextral transpression producing regional F3 folds and the overall east-west trends of the Wawa-Quetico boundary region post-dated the 2680 ± 2 Ma Nama Creek pluton. Field relationships and isotopic ages support correlation of greywackes across the subprovince boundary, and demonstrate that most or all of the ductile deformation post-dated sedimentation. Ductile structures, especially those associated with dextral transpression, are not directly related to juxtaposition of the Wawa and Quetico subprovinces, as these were already contiguous, either through sedimentation on a volcanic substrate or as a result of earlier cryptic structures. Our results imply that the belt-like configuration of the subprovinces, emphasized in accretionary models of the Superior Province, is a relatively late feature that overprints older, tectonically significant structures.


2005 ◽  
Vol 42 (10) ◽  
pp. 1677-1697 ◽  
Author(s):  
O van Breemen ◽  
L Corriveau

Combined sensitive high-resolution ion microprobe (SHRIMP) and thermal ionization mass spectrometry (TIMS) U–Pb zircon data from a tightly constrained stratigraphic context of the Wakeham Group provide a precise depositional age for sedimentation within this extensive basin of the Grenville Province. Metavolcanic rocks at the eastern exposure of the Wakeham Group yield ages of 1511 ± 13, 1506 ± 11, 1502 ± 9, and 1491 ± 7 Ma. A crosscutting 1493 ± 10 Ma porphyry vein marks the end of volcanism. The older two volcanic rocks rest stratigraphically above metasediments, with a 1517 ± 20 Ma maximum age of sedimentation derived from the youngest detrital zircons of an arenite. Five 1.61–1.55 Ga inherited zircons in the volcanics, reinforced by coeval inheritance in nearby plutons, indicate a Labradorian basement source to the supracrustals. The predominant arenite detrital zircons dates are in the 1.95–1.75 Ga range, however, and feature both trace element and morphological evidence for metamorphism in the source terrane. Together with zircons as old as 2.95 Ga, the detrital age spectrum is consistent with a circum-Superior provenance. The ages obtained imply that Wakeham Group volcanism and sedimentation were, at least in part, coeval with the onset of 1.52–1.46 Ga Pinwarian plutonism along the southeastern margin of Laurentia. U–Pb zircon analyses record a late Grenvillian metamorphic event around 1019 Ma. U–Pb monazite analyses from one sample yield 1010–1000 Ma ages, and the end of Grenvillian metamorphism is marked by 990 Ma U–Pb titanite ages.


2011 ◽  
Vol 149 (4) ◽  
pp. 626-644 ◽  
Author(s):  
JOHN D. BRADSHAW ◽  
ALAN P. M. VAUGHAN ◽  
IAN L. MILLAR ◽  
MICHAEL J. FLOWERDEW ◽  
RUDOLPH A. J. TROUW ◽  
...  

AbstractField observations from the Trinity Peninsula Group at View Point on the Antarctic Peninsula indicate that thick, southward-younging and overturned clastic sedimentary rocks, comprising unusually coarse conglomeratic lenses within a succession of fine-grained sandstone–mudstone couplets, are the deposits of debris and turbidity flows on or at the foot of a submarine slope. Three detrital zircons from the sandstone–mudstone couplets date deposition at 302 ± 3 Ma, at or shortly after the Carboniferous–Permian boundary. Conglomerates predominantly consist of quartzite and granite and contain boulders exceeding 500 mm in diameter. Zircons from granitoid clasts and a silicic volcanic clast yield U–Pb ages of 466 ± 3 Ma, 373 ± 5 Ma and 487 ± 4 Ma, respectively and have corresponding average εHft values between +0.3 and +7.6. A quartzite clast, conglomerate matrix and sandstone interbedded with the conglomerate units have broadly similar detrital zircon age distributions and Hf isotope compositions. The clast and detrital zircon ages match well with sources within Patagonia; however, the age of one granite clast and the εHf characteristics of some detrital zircons point to a lesser South Africa or Ellsworth Mountain-like contribution, and the quartzite and granite-dominated composition of the conglomerates is similar to upper Palaeozoic diamictites in the Ellsworth Mountains. Unlike detrital zircons, large conglomerate clasts limit possible transport distance, and suggest sedimentation took place on or near the edge of continental crust. Comparison with other upper Palaeozoic to Mesozoic sediments in the Antarctic Peninsula and Patagonia, including detrital zircon composition and the style of deformation, suggests deposition of the Trinity Peninsula Group in an upper plate basin on an active margin, rather than a subduction-related accretionary setting, with slow extension and rifting punctuated by short periods of compression.


Sign in / Sign up

Export Citation Format

Share Document