U–Pb age constraints on arenaceous and volcanic rocks of the Wakeham Group, eastern Grenville Province

2005 ◽  
Vol 42 (10) ◽  
pp. 1677-1697 ◽  
Author(s):  
O van Breemen ◽  
L Corriveau

Combined sensitive high-resolution ion microprobe (SHRIMP) and thermal ionization mass spectrometry (TIMS) U–Pb zircon data from a tightly constrained stratigraphic context of the Wakeham Group provide a precise depositional age for sedimentation within this extensive basin of the Grenville Province. Metavolcanic rocks at the eastern exposure of the Wakeham Group yield ages of 1511 ± 13, 1506 ± 11, 1502 ± 9, and 1491 ± 7 Ma. A crosscutting 1493 ± 10 Ma porphyry vein marks the end of volcanism. The older two volcanic rocks rest stratigraphically above metasediments, with a 1517 ± 20 Ma maximum age of sedimentation derived from the youngest detrital zircons of an arenite. Five 1.61–1.55 Ga inherited zircons in the volcanics, reinforced by coeval inheritance in nearby plutons, indicate a Labradorian basement source to the supracrustals. The predominant arenite detrital zircons dates are in the 1.95–1.75 Ga range, however, and feature both trace element and morphological evidence for metamorphism in the source terrane. Together with zircons as old as 2.95 Ga, the detrital age spectrum is consistent with a circum-Superior provenance. The ages obtained imply that Wakeham Group volcanism and sedimentation were, at least in part, coeval with the onset of 1.52–1.46 Ga Pinwarian plutonism along the southeastern margin of Laurentia. U–Pb zircon analyses record a late Grenvillian metamorphic event around 1019 Ma. U–Pb monazite analyses from one sample yield 1010–1000 Ma ages, and the end of Grenvillian metamorphism is marked by 990 Ma U–Pb titanite ages.

Author(s):  
M. Aftalion ◽  
O. van Breemen ◽  
D. R. Bowes

ABSTRACTThe existence of a basement of granulite beneath the Midland Valley is supported by investigations of inclusions in volcanic rocks and the geophysical studies of the LISPB experiment. To establish age constraints for this basement, a compilation is presented of available Rb–Sr whole-rock, common lead, U–Pb zircon and Sm–Nd radiometrie data for crystalline rocks in Scotland from the earliest recognised crust (c. 2900 Ma) to 380 Ma (“end” of Caledonian orogeny) including xenoliths in volcanic vents and boulders in conglomerates.For rocks within the Midland Valley, isotopic data provide four lines of evidence. (1) An upper intercept U–Pb age of c. 1700 Ma for detrital zircons from a lower Palaeozoic greywacke from Dalmellington corresponds to a late stage of the Laxfordian orogenic episode (early Proterozoic) with possibly some overprinting during the Grenvillian episode (mid Proterozoic). (2) The common lead composition of the Distinkhorn granite suggests the participation of early Proterozoic basement during granite emplacement. (3) For xenoliths from the Carboniferous Partan Craig vent, one gives a Sm–Nd CHUR model age of 1180 ± 55 Ma, a second yielded a Sm–Nd garnet—potassium feldspar age of 356 ± 6 Ma and an upper intercept U–Pb age from zircons from the third is c. 2200 (± 240) Ma; for xenoliths from other vents, an Rb–Sr whole-rock isochron of 1101 ± 63 Ma and an Sm–Nd model age of c. 1100 Ma arerecorded. (4) A linear array corresponding to an apparent age of 770 ± 180 Ma on a Pb–Pb isochron diagram for Tertiary igneous rocks of Arran points to an underlying basement of late Precambrian orthogneiss.The existence of basement made of products of the Grenvillian episode, or predominantly so, similar to the basement N of the Highland Boundary fault, is not inconsistent with the available evidence. However, zircons and other rock components appear to have an ultimate Lewisian provenance. At least in parts, there is also a strong late Proterozoic imprint. Further studies are required for an unequivocal solution.


2016 ◽  
Vol 53 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Xiao Ma ◽  
Kunguang Yang ◽  
Xuegang Li ◽  
Chuangu Dai ◽  
Hui Zhang ◽  
...  

The Jiangnan Orogeny generated regional angular unconformities between the Xiajiang Group and the underlying Sibao Group in the western Jiangnan Orogen along the southeastern margin of the Yangtze Block in southeast Guizhou, South China. Laser ablation – inductively coupled plasma – mass spectrometry (LA–ICP–MS) U–Pb zircon dating of two samples of the Motianling granitic pluton yielded U–Pb zircon ages of 826.2 ± 3.4 and 825.5 ± 6.1 Ma, with an average age of 825.6 ± 3.0 Ma, which is considered the minimum depositional age of the Sibao Group. The U–Pb ages of the youngest detrital zircon grains from the Sibao Group and the Xiajiang Group yielded average ages of 834.9 ± 3.8 and 794.6 ± 4.2 Ma, respectively. The depositional age of the Sibao Group can be constrained at 825–835 Ma, and deposition of the Xiajiang Group did not begin before ca. 800 Ma. These results suggest that the Jiangnan Orogeny, which led to the assembly of the Yangtze and Cathaysia blocks, ended at 795–835 Ma on the western segment of the Jiangnan Orogen. The detrital zircon distribution spectrums of the Sibao and Xiajiang groups suggest a provenance from Neoproterozoic basement sedimentary sequences along with a mixture of local Neoproterozoic subduction-related felsic granitoids, distant plutons from the western Yangtze Block and eastern Jiangnan Orogen, and recycled materials from the interior of the Yangtze Block. By comparing the basin evolution histories and magmatic and metamorphic events along the continental margins of the Rodinia supercontinent, it is proposed that the South China Block might have been located at the periphery, adjacent to North India and East Antarctica, rather than in the interior of Rodinia in Neoproterozoic time.


1993 ◽  
Vol 30 (3) ◽  
pp. 465-473 ◽  
Author(s):  
E. Anne Sager-Kinsman ◽  
R. R. Parrish

The Central Metasedimentary Belt (CMB) of the Grenville Province contains metasedimentary sequences belonging to a number of distinct tectono-stratigraphic terranes whose depositional ages are poorly known. This study provides information on not only the provenance, but also the maximum age of clastic rocks in two of these terranes, the Elzevir Terrane on the northwest and the Frontenac Terrane to its southeast, adjacent to the Adirondack Mountains of New York.The Flinton Group, a component of the Elzevir Terrane, is a distinctive, mostly clastic, sedimentary sequence that unconformably overlies igneous and metavolcanic rocks of the main part of Elzevir Terrane of the CMB. Analyzed zircons from quartzose metasediments of the Flinton Group are 0–2% discordant and range in age from 1150 to 1335 Ma, with older rounded grains at 1461 ± 5 and 1877 ± 3 Ma. The quartzite was therefore deposited after ca. 1150 Ma, indicating that the Flinton Group is more than 100 Ma younger than the intrusion of the underlying Elzevir batholith. We speculate that 1150–1180 Ma zircons within the Flinton Group were derived from plutons in the Frontenac Terrane to the southeast, implying that the Elzevir and Frontenac terranes were contiguous during Flinton Group deposition. Subsequent metamorphism of the Flinton Group occured between 1150 and 1080 Ma.The high-grade Frontenac Terrane of the CMB lies southeast of Elzevir Terrane, and contains marble associated with pelitic gneiss and quartzite, as well as granitic intrusive rocks; it resembles a metamorphosed continental margin sedimentary sequence. U–Pb analyses of zircons from quartzites from two different localities are generally less than 5% discordant, but show stronger evidence for Grenvillian Pb loss than zircons from the Flinton Group. 207Pb/206Pb ages range from 1493 to 2580 Ma, with one analysis (2% discordant) at 1306 ± 16 Ma, another at 3185 ± 3 Ma, and a cluster of ages between 1745 and 1892 Ma. Detrital zircon ages are, for the most part, distinctly older than in the Flinton Group. The age of this quartzite sequence is tentatively regarded as less than ca. 1300 Ma (based on one grain), but is certainly less than 1500 Ma. It could therefore have been deposited during the same time interval as the 1.2–1.3 Ga metasedimentary and metavolcanic rocks of the Elzevir Terrane. Although Frontenac Terrane experienced metamorphism along with Elzevir Terrane around 1.1 Ga, the principle metamorphic culmination in the Frontenac occurred prior to 1170 Ma.


2017 ◽  
Vol 155 (6) ◽  
pp. 1230-1246 ◽  
Author(s):  
DEBIDARSANI SAHOO ◽  
KAMAL LOCHAN PRUSETH ◽  
DEWASHISH UPADHYAY ◽  
SAMEER RANJAN ◽  
DIPAK C. PAL ◽  
...  

AbstractThe Cuddapah basin in southern India, consisting of the Palnad, Srisailam, Kurnool and Papaghni sub-basins, contains unmetamorphosed and undeformed sediments deposited during a long span of time in the Proterozoic. In the absence of robust age constraints, there is considerable confusion regarding the relative timing of sedimentation in these sub-basins. In this study, U–Pb isotopic dating of zircon and U–Th–Pbtotaldating of monazite and uraninite from the gritty quartzite that supposedly belongs to the formation Banganapalle Quartzite have been used to constrain the beginning of sedimentation in the Palnad sub-basin. Magmatic and detrital zircons recording an age of 2.53 Ga indicate that the sediments were derived from the granitic basement or similar sources and were deposited after 2.53 Ga. Hydrothermally altered zircons both in the basement and the cover provide concordant ages of 2.32 and 2.12 Ga and date two major hydrothermal events. Thus, the gritty quartzite must have been deposited sometime between 2.53 and 2.12 Ga and represents the earliest sediments in the Cuddapah basin. Monazite and uraninite give a wide spectrum of ages between 2.5 Ga and 150 Ma, which indicates several pulses of hydrothermal activity over a considerable time span, both in the basement granite and the overlying quartzite. The new age constraints suggest that the gritty quartzite may be stratigraphically equivalent to the Gulcheru Quartzite that is the oldest unit in the Cuddapah basin, and that a sedimentary/erosional hiatus exists above it.


2018 ◽  
Vol 13 (4-5) ◽  
pp. 36-51
Author(s):  
J. V. Frolova ◽  
V. V. Ladygin ◽  
E. M. Spiridonov ◽  
G. N. Ovsyannikov

The article considers the petrogenetic features of the volcanogenic rocks of the Middle Jurassic age of the Mountain Crimea and analyzes their influence on physical (density, porosity, water absorption, and magnetic susceptibility) and physical-mechanical properties (strength, modulus of elasticity, and Poisson's ratio). Among volcanogenic strata there are subvolcanic, effusive and volcanogenic-clastic rocks. All volcanic rocks were altered under the influence of the regional low-grade metamorphism of the zeolite and prehnite-pumpellyite facies, which resulted in a greenstone appearance. Among the secondary mineral the most common are albite, chlorite, quartz, adularia, sericite, calcite, pumpellyite, prenite, zeolites, epidote, sphene, and clay minerals. It is shown that low-grade metamorphism is characterized by heterogenious transformations: there are both slightly modified, practically fresh differences, and fully altered rocks. Tuffs are usually altered to a greater extent than effusive and subvolcanic rocks. In general, effusive and volcanogenic-clastic rocks differ markedly in their physicalmechanical properties, which is due to the peculiarities of their formation: the former are substantially more dense and stronger, less porous and compressible. However, these differences are leveled as a result of intensive changes in mineral composition and porosity in the process of low-grade metamorphism. The most characteristic values of metavolcanite properties were revealed. It is shown that among all studied parameters, the magnetic susceptibility most clearly correlates with the degree of rocks alteration.


Geology ◽  
2021 ◽  
Author(s):  
Adam Brudner ◽  
Hehe Jiang ◽  
Xu Chu ◽  
Ming Tang

The Grenville Province on the eastern margin of Laurentia is a remnant of a Mesoproterozoic orogenic plateau that comprised the core of the ancient supercontinent Rodinia. As a protracted Himalayan-style orogen, its orogenic history is vital to understanding Mesoproterozoic tectonics and paleoenvironmental evolution. In this study, we compared two geochemical proxies for crustal thickness: whole-rock [La/Yb]N ratios of intermediate-to-felsic rocks and europium anomalies (Eu/Eu*) in detrital zircons. We compiled whole-rock geochemical data from 124 plutons in the Laurentian Grenville Province and collected trace-element and geochronological data from detrital zircons from the Ottawa and St. Lawrence River (Canada) watersheds. Both proxies showed several episodes of crustal thickening and thinning during Grenvillian orogenesis. The thickest crust developed in the Ottawan phase (~60 km at ca. 1080 Ma and ca. 1045 Ma), when the collision culminated, but it was still up to 20 km thinner than modern Tibet. We speculate that a hot crust and several episodes of crustal thinning prevented the Grenville hinterland from forming a high Tibet-like plateau, possibly due to enhanced asthenosphere-lithosphere interactions in response to a warm mantle beneath a long-lived supercontinent, Nuna-Rodinia.


1985 ◽  
Vol 22 (3) ◽  
pp. 452-463 ◽  
Author(s):  
B. R. Watters ◽  
R. L. Armstrong

Two whole-rock suites of metavolcanic rocks from separate volcanic belts of the Churchill Province in northern Saskatchewan have been dated by Rb–Sr. Samples from the Amisk Group of the Flin Flon – Snow Lake domain provide an isochron date of 1784 ± 44 Ma; suites from the Waddy Lake and Devil Lake areas of the La Ronge (–Lynn Lake) domain yield isochron dates of 1814 ± 26 and 1854 ± 100 Ma, respectively. All are regarded as minima for, but close approximations to, emplacement ages. The maximum crustal age of any suite cannot greatly exceed 1850 Ma.Previous Rb–Sr and U–Pb isotopic dates together with these new determinations confirm the contemporaneous existence of two volcanic arcs, active during the late Aphebian (1875–1784 Ma) in the Churchill Province.Low initial 87Sr/86Sr ratios (0.7017–0.7022) are consistent with a petrochemically inferred subduction-related origin for the volcanic rocks with no closed-system reworking of Archean crust, and a linear evolution of 87Sr/86Sr ratio in the magmatic-arc mantle source region from 4.55 Ga to the present.


Author(s):  
William H Peck ◽  
Matthew P Quinan

The Morin terrane is an allochthonous crustal block in the southwestern Grenville Province with a relatively poorly-constrained metamorphic history. In this part of the Grenville Province, some terranes were part of the ductile middle crust during the 1.09–1.02 Ga collision of Laurentia with the Amazon craton (the Ottawan phase of the Grenvillian orogeny), while other terranes were part of the orogen’s superstructure. New U-Pb geochronology suggests that the Morin terrane experienced granulite-facies metamorphism during the accretionary Shawinigan orogeny (1.19–1.14 Ga) and again during the Ottawan. Seven zircon samples from the 1.15 Ga Morin anorthosite suite were dated to confirm earlier age determinations, and Ottawan metamorphic rims (1.08–1.07 Ga) were observed in two samples. U-Pb dating of titanite in nine marble samples surrounding the Morin anorthosite suite yielded mixed ages spanning between the Shawinigan and Ottawan metamorphisms (n=7), and predominantly Ottawan ages (n=2). Our results show that Ottawan zircon growth and resetting of titanite ages is spatially heterogeneous in the Morin terrane. Ages with a predominantly Ottawan signature are recognized in the Morin shear zone, which deforms the eastern lobe of the anorthosite, in an overprinted skarn zone on the western side of the massif, and in the Labelle shear zone that marks its western boundary. In the rest of the Morin terrane titanite with Shawinigan ages appear to have been only partially reset during the Ottawan. Further work is needed to better understand the relationship between the character of Ottawan metamorphism and resetting in different parts of the Morin terrane.


2020 ◽  
Vol 115 (8) ◽  
pp. 1855-1870 ◽  
Author(s):  
Liam Courtney-Davies ◽  
Cristiana L. Ciobanu ◽  
Simon R. Tapster ◽  
Nigel J. Cook ◽  
Kathy Ehrig ◽  
...  

Abstract Establishing timescales for iron oxide copper-gold (IOCG) deposit formation and the temporal relationships between ores and the magmatic rocks from which hydrothermal, metal-rich fluids are sourced is often dependent on low-precision data, particularly for deposits that formed during the Proterozoic. Unlike accessory minerals routinely used to track hydrothermal mineralization, iron oxides are dominant components of IOCG systems and are therefore pivotal to understanding deposit evolution. The presence of ubiquitous, magmatic-hydrothermal U-(Pb)-W-Sn-Mo–bearing zoned hematite resolves a range of geochronological issues concerning formation of the ~1.6 Ga Olympic Dam IOCG deposit, South Australia, at up to ~0.05% precision (207Pb/206Pb weighted mean; 2σ) using isotope dilution-thermal ionization mass spectrometry (ID-TIMS). Coupled with chemical abrasion-ID-TIMS zircon dates from host granite and volcanic rocks within and enclosing the ore-body, a confident magmatic-hydrothermal chronology is defined. The youngest zircon date from the granite intrusion hosting Olympic Dam indicates magmatism was occurring up until 1593.28 ± 0.26 Ma. The orebody was principally formed during a major mineralizing event following granite uplift and during cupola collapse, whereby the hematite with the oldest age is recorded in the outer shell of the deposit at 1591.27 ± 0.89 Ma, ~2 m.y. later than the youngest documented magmatic zircon. Hematite dates captured throughout major lithologies, different ore zones, and the ~2-km vertical extent of the deposit support ~2 m.y. of hydrothermal activity. New age constraints on the spatial-temporal evolution of the formation of Olympic Dam are considered with respect to a mantle to crustal continuum model. Cyclical tapping of magma reservoirs to maintain crystal mushes for extended time periods and incremental building of batholiths on the million-year scale prior to main mineralization pulses can explain the ~2-m.y. temporal window temporal window inferred from the data. Despite the challenge of reconciling such an extended window with contemporary models for porphyry deposits (≤1 m.y.), formation of Proterozoic ore deposits has been addressed at high-precision and supports the case that giant IOCG deposits may form over millions of years.


Sign in / Sign up

Export Citation Format

Share Document