Petrogenesis of peraluminous magmas in the Central Andean backarc: the Huayra Huasi Volcanic Complex, NW Argentina

Author(s):  
C. B. Jofré ◽  
P. J. Caffe ◽  
R. B. Trumbull ◽  
G. Maro ◽  
A. K. Schmitt ◽  
...  
Keyword(s):  
LITOSFERA ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 224-230
Author(s):  
V. N. Smirnov ◽  
K. S. Ivanov ◽  
T. V. Bayanova

Research subject. The article presents the results of dating two dolerite dikes differing in geochemical features from a section along the Iset river in the area of Smolinskoe settlement (the Eastern zone of the Middle Urals). Materials and methods. The dating was performed by an U-Pb ID-TIMS technique for single zircon grains using an artificial 205Pb/235U tracer in the laboratory of geochronology and isotope geochemistry of the Geological Institute of the Kola Science Centre of the Russian Academy of Sciences. The lead isotopic composition and uranium and lead concentrations were measured using a Finnigan-MAT (RPQ) seven-channel mass spectrometer in dynamic mode using a secondary electron multiplier and RPQ quadrupole in ion counting mode. Results. The dikes were dated 330 ± 3 Ma and 240 ± 2 Ma. Conclusions. The research results indicate different ages of dolerite dikes developed within the Eastern zone of the Middle Urals. The oldest of the two established age levels corresponds to the Early Carboniferous era. This fact, along with the proximity of the dolerites to the petrochemical features of the basaltoids of the Early Carboniferous Beklenischevsky volcanic complex, allows these bodies to be considered as hypabyssal comagmates of these volcanics. The youngest obtained age level – Triassic – indicates that the introduction of some dolerite dikes was associated with the final phases of the trapp formation developed rarely within the eastern outskirts of the Urals and widely further east in the foundation (pre-Jurassic basement) of the West-Siberian Plate.


2016 ◽  
Author(s):  
Noah N. Williams ◽  
◽  
Benson G. Worthington ◽  
Samuel Hampton ◽  
Darren Gravley
Keyword(s):  

Lithos ◽  
2021 ◽  
pp. 106297
Author(s):  
G. Deniz Dogan-Kulahci ◽  
Sarah B. Cichy ◽  
Abidin Temel ◽  
Roberta Spallanzani

Geothermics ◽  
2021 ◽  
Vol 94 ◽  
pp. 102115
Author(s):  
F. Chacón-Hernández ◽  
F.R. Zúñiga ◽  
J.O. Campos-Enríquez ◽  
J. Lermo-Samaniego ◽  
N. Jiménez-Méndez

1980 ◽  
Vol 13 (2) ◽  
pp. 160-171 ◽  
Author(s):  
Alan N. Federman ◽  
Steven N. Carey

AbstractFive widespread tephra layers are found in late Quaternary sediments (0–130,000 yr B.P.) of the Eastern Mediterranean Sea. These layers have been correlated among abyssal cores and to their respective terrestrial sources by electron-probe microanalysis of glass and pumice shards. Major element variations are sufficient to discriminate unambiguously between the five major layers. Oxygen isotope stratigraphy in one of the cores studied was used to data four of the five layers. Two of the widespread layers are derived from explosive eruptions of the Santorini volcanic complex: the Minoan Ash (3370 yr B.P.) and the Acrotiri Ignimbrite (18,000 yr B.P.). An additional layer, found in one core only, is most likely correlated to the Middle Pumice Series of Santorini (approximately 100,000 yr B.P.). Two layers are correlated to deposits on the islands of Yali and Kos and date to 31,000 and 120,000 yr B.P., respectively. One layer originated from the Neapolitan area of Italy 38,000 yr B.P.


Sign in / Sign up

Export Citation Format

Share Document