Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo

2012 ◽  
Vol 48 (7) ◽  
pp. 809-821 ◽  
Author(s):  
Yinting Chen ◽  
Guoda Lian ◽  
Chengde Liao ◽  
Weiwei Wang ◽  
Linjuan Zeng ◽  
...  
2010 ◽  
Vol 19 (4) ◽  
pp. 419-429 ◽  
Author(s):  
Po-Wah So ◽  
Tammy Kalber ◽  
David Hunt ◽  
Michael Farquharson ◽  
Alia Al-Ebraheem ◽  
...  

Determination of the dynamics of specific cell populations in vivo is essential for the development of cell-based therapies. For cell tracking by magnetic resonance imaging (MRI), cells need to internalize, or be surface labeled with a MRI contrast agent, such as superparamagnetic iron oxide nanoparticles (SPIOs): SPIOs give rise to signal loss by gradient-echo and T2-weighted MRI techniques. In this study, cancer cells were chemically tagged with biotin and then magnetically labeled with anti-biotin SPIOs. No significant detrimental effects on cell viability or death were observed following cell biotinylation. SPIO-labeled cells exhibited signal loss compared to non-SPIO-labeled cells by MRI in vitro. Consistent with the in vitro MRI data, signal attenuation was observed in vivo from SPIO-labeled cells injected into the muscle of the hind legs, or implanted subcutaneously into the flanks of mice, correlating with iron detection by histochemical and X-ray fluorescence (XRF) methods. To further validate this approach, human mesenchymal stem cells (hMSCs) were also employed. Chemical biotinylation and SPIO labeling of hMSCs were confirmed by fluorescence microscopy and flow cytometry. The procedure did not affect proliferation and multipotentiality, or lead to increased cell death. The SPIO-labeled hMSCs were shown to exhibit MRI signal reduction in vitro and was detectable in an in vivo model. In this study, we demonstrate a rapid, robust, and generic methodology that may be a useful and practical adjuvant to existing methods of cell labeling for in vivo monitoring by MRI. Further, we have shown the first application of XRF to provide iron maps to validate MRI data in SPIO-labeled cell tracking studies.


2019 ◽  
Vol 21 ◽  
pp. 102063 ◽  
Author(s):  
Vladimir Mulens-Arias ◽  
José Manuel Rojas ◽  
Laura Sanz-Ortega ◽  
Yadileiny Portilla ◽  
Sonia Pérez-Yagüe ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2218 ◽  
Author(s):  
Amalia Ruiz ◽  
Adán Alpízar ◽  
Lilianne Beola ◽  
Carmen Rubio ◽  
Helena Gavilán ◽  
...  

Superparamagnetic iron oxide nanoparticles are one of the most prominent agents used in theranostic applications, with MRI imaging the main application assessed. The biomolecular interface formed on the surface of a nanoparticle in a biological medium determines its behaviour in vitro and in vivo. In this study, we have compared the formation of the protein corona on highly monodisperse iron oxide nanoparticles with two different coatings, dimercaptosuccinic acid (DMSA), and after conjugation, with a bifunctional polyethylene glycol (PEG)-derived molecule (2000 Da) in the presence of Wistar rat plasma. The protein fingerprints around the nanoparticles were analysed in an extensive proteomic study. The results presented in this work indicate that the composition of the protein corona is very difficult to predict. Proteins from different functional categories—cell components, lipoproteins, complement, coagulation, immunoglobulins, enzymes and transport proteins—were identified in all samples with very small variability. Although both types of nanoparticles have similar amounts of bonded proteins, very slight differences in the composition of the corona might explain the variation observed in the uptake and biotransformation of these nanoparticles in Caco-2 and RAW 264.7 cells. Cytotoxicity was also studied using a standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Controlling nanoparticles’ reactivity to the biological environment by deciding on its surface functionalization may suggest new routes in the control of the biodistribution, biodegradation and clearance of multifunctional nanomedicines.


2013 ◽  
Vol 14 (1-2) ◽  
pp. 5-23 ◽  
Author(s):  
Nastassja Lewinski ◽  
Halshka Graczyk ◽  
Michael Riediker

AbstractIn the past decade, many studies have been conducted to determine the health effects induced by exposure to engineered nanomaterials (NMs). Specifically for exposure via inhalation, numerous in vitro and animal in vivo inhalation toxicity studies on several types of NMs have been published. However, these results are not easily extrapolated to judge the effects of inhaling NMs in humans, and few published studies on the human response to inhalation of NMs exist. Given the emergence of more industries utilizing iron oxide nanoparticles as well as more nanomedicine applications of superparamagnetic iron oxide nanoparticles (SPIONs), this review presents an overview of the inhalation studies that have been conducted in humans on iron oxides. Both occupational exposure studies on complex iron oxide dusts and fumes, as well as human clinical studies on aerosolized, micron-size iron oxide particles are discussed. Iron oxide particles have not been described to elicit acute inhalation response nor promote lung disease after chronic exposure. The few human clinical studies comparing inhalation of fine and ultrafine metal oxide particles report no acute changes in the health parameters measured. Taken together existing evidence suggests that controlled human exposure to iron oxide nanoparticles, such as SPIONs, could be conducted safely.


Sign in / Sign up

Export Citation Format

Share Document