A microfluidic pore model to study the migration of fine particles in single-phase and multi-phase flows in porous media

2017 ◽  
Vol 24 (2) ◽  
pp. 1071-1080 ◽  
Author(s):  
Jongwon Jung ◽  
Shuang Cindy Cao ◽  
Young-Ho Shin ◽  
Riyadh I. Al-Raoush ◽  
Khalid Alshibli ◽  
...  
1981 ◽  
Vol 104 ◽  
pp. 467-482 ◽  
Author(s):  
L. A. Romero ◽  
R. H. Nilson

Shock-like features of phase-change flows in porous media are explained, based on the generalized Darcy model. The flow field consists of two-phase zones of parabolic/hyperbolic type as well as adjacent or imbedded single-phase zones of either parabolic (superheated, compressible vapour) or elliptic (subcooled, incompressible liquid) type. Within the two-phase zones or at the two-phase/single-phase interfaces, there may be steep gradients in saturation and temperature approaching shock-like behaviour when the dissipative effects of capillarity and heat-conduction are negligible. Illustrative of these shocked, multizone flow-structures are the transient condensing flows in porous media, for which a self-similar, shock-preserving (Rankine–Hugoniot) analysis is presented.


Fractals ◽  
2021 ◽  
Author(s):  
Wenhui Song ◽  
Masa Prodanovic ◽  
Jun Yao ◽  
Kai Zhang ◽  
Qiqi Wang

2018 ◽  
Vol 2 (21) ◽  
pp. 85-101
Author(s):  
Olga Shtyka ◽  
Łukasz Przybysz ◽  
Mariola Błaszczyk ◽  
Jerzy P. Sęk

The research focuses on the issues concerning a process of multiphase liquids transport in granular porous media driven by the capillary pressure. The current publication is meant to introduce the results of experimental research conducted to evaluate the kinetics of the imbibition and emulsions behavior inside the porous structures. Moreover, the influence of the dispersed phase concentration and granular media structure on the mentioned process was considered. The medium imbibition with emulsifier-stabilized emulsions composed of oil as the dispersed phase in concentrations of 10 vol%, 30 vol%, and 50 vol%, was investigated. The porous media consisted of oleophilic/hydrophilic beads with a fraction of 200–300 and 600–800 μm. The experimental results provided that the emulsions imbibition in such media depended stronger on its structure compare to single-phase liquids. The increase of the dispersed phase concentration caused an insignificant mass decreasing of the imbibed emulsions and height of its penetration in a sorptive medium. The concentrations of the imbibed dispersions exceeded their initial values, but reduced with permeants front raise in the granular structures that can be defined as the influential factor for wicking process kinetics.


Sign in / Sign up

Export Citation Format

Share Document