scholarly journals Appointment of a new Co-Editor-in-Chief, Prof. Georg Fantner, Microsystem Technologies

Author(s):  
Bharat Bhushan
2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000275-000280 ◽  
Author(s):  
Houari Cobas Gomez ◽  
Mario Ricardo Gongora-Rubio ◽  
Bianca Oliveira Agio ◽  
Vanessa Tiemi Kimura ◽  
Adriano Marim de Oliveira ◽  
...  

Nanoprecipitation is a nanonization technique used for nanoparticle generation. Several fields, like pharmacology and fine chemistry, make use of such technique. Typically are used a bulky batch mechanical processes rendering high polydispersity index of generated nanoparticles, poorly particle size reproducibility and energy wasting. LTCC-based microsystem technologies allow the implementation of different unitary operations for chemical process, making it an enabling technology for the miniaturization of chemical processes. In fact, recently LTCC microfluidic reactors have been used to produce micro and nanoparticles with excellent control of size distribution and morphology. The present work provides a report on the performance of a 3D LTCC flow focusing Microfluidic device designed to fabricate polymeric nanocapsules for Hydrocortisone drug encapsulation, using nanoprecipitation route. Monodisperse Hydrocortisone nanocapsules were obtained with sizes (Tp) from 188.9 nm to 459.1 nm with polydispersity index (PDI) from 0.102 to 0.235.


2006 ◽  
Vol 3 (3) ◽  
pp. 109-120
Author(s):  
K.A. Peterson ◽  
K.D. Patel ◽  
C.K. Ho ◽  
B.R. Rohrer ◽  
C.D. Nordquist ◽  
...  

Low Temperature Cofired Ceramic (LTCC) has proven to be an enabling medium for microsystem technologies, because of its desirable electrical, physical, and chemical properties coupled with its capability for rapid prototyping and scalable manufacturing of components. LTCC is viewed as an extension of hybrid microcircuits, and in that function it enables development, testing, and deployment of silicon microsystems. However, its versatility has allowed it to succeed as a microsystem medium in its own right, with applications in non-microelectronic meso-scale devices and in a range of sensor devices. Applications include silicon microfluidic ‘chip-and-wire’ systems and fluid grid array (FGA)/microfluidic multichip modules using embedded channels in LTCC, and cofired electro-mechanical systems with moving parts. Both the microfluidic and mechanical system applications are enabled by sacrificial volume materials (SVM), which serve to create and maintain cavities and separation gaps during the lamination and cofiring process. SVMs consisting of thermally fugitive or partially inert materials are easily incorporated. Screeding is an incorporation technique we describe that improves uniformity and eliminates processing steps. Recognizing the premium on devices that are cofired rather than assembled, we report on functional-as-released and functional-as-fired moving parts, including an impeller that has been exercised over thirty million cycles, and a cofired pressure sensor that requires only pressure source and electrical connections. Additional applications for cofired transparent windows, some as small as an optical fiber, are also described. The applications described help pave the way for widespread application of LTCC to biomedical, control, analysis, characterization, and radio frequency (RF) functions for macro-meso-microsystems.


Sign in / Sign up

Export Citation Format

Share Document