3D FOCALIZATION MICROFLUIDIC DEVICE BUILT WITH LTCC TECHNOLOGY FOR NANOPARTICLE GENERATION USING NANOPRECIPITATION ROUTE

2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000275-000280 ◽  
Author(s):  
Houari Cobas Gomez ◽  
Mario Ricardo Gongora-Rubio ◽  
Bianca Oliveira Agio ◽  
Vanessa Tiemi Kimura ◽  
Adriano Marim de Oliveira ◽  
...  

Nanoprecipitation is a nanonization technique used for nanoparticle generation. Several fields, like pharmacology and fine chemistry, make use of such technique. Typically are used a bulky batch mechanical processes rendering high polydispersity index of generated nanoparticles, poorly particle size reproducibility and energy wasting. LTCC-based microsystem technologies allow the implementation of different unitary operations for chemical process, making it an enabling technology for the miniaturization of chemical processes. In fact, recently LTCC microfluidic reactors have been used to produce micro and nanoparticles with excellent control of size distribution and morphology. The present work provides a report on the performance of a 3D LTCC flow focusing Microfluidic device designed to fabricate polymeric nanocapsules for Hydrocortisone drug encapsulation, using nanoprecipitation route. Monodisperse Hydrocortisone nanocapsules were obtained with sizes (Tp) from 188.9 nm to 459.1 nm with polydispersity index (PDI) from 0.102 to 0.235.

2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000294-000302
Author(s):  
Mário Ricardo Gongora-Rubio ◽  
Kellen Heloizy Garcia Freitas ◽  
Juliana de Novais Schianti ◽  
Adriano Marim de Oliveira ◽  
Natália Neto Pereira Cerize ◽  
...  

The chemical industry is moving toward miniaturization with the help of microreaction technology and automated control systems. Besides the evident advantages of Microtechnology like improved portability, reduced energy use, safety and flexibility, the main advantage associated with the miniaturization of chemical processes is the increased microreactor control due to predictable thermal and mass transportation properties. We understand that LTCC Microsystem technology have a relevant role in this area. LTCC Microfluidic devices have been applied to carry out several chemical processes operations, including mixing, separation, chemical reactions, heterogeneous catalysis, heat exchange and so on. More recently, LTCC microfluidic systems have also been used to produce micro- and nanoparticles with excellent control of size distribution, morphology and constitution. The present work give an account of some LTCC Microfluidic devices aimed for Micro and Nanoparticle fabrication. At this time we report devices for: Emulsion generation for obtaining alginate microparticles by ionic gelation; Electrospinning applications, Microreactors for silver nanoparticle production and 3D Flow focusing devices for pharmaceutical active nanocrystallization.


2013 ◽  
Vol 2013 (CICMT) ◽  
pp. 000110-000117
Author(s):  
Mario Ricardo Gongora-Rubio ◽  
Juliana de Novais Schianti ◽  
Houari Cobas Gomez ◽  
Andre da Costa Teves

Miniaturization of chemical processes is becoming a must for green chemistry and sustainable industry processes, so technological research in this direction is well received. Continuous microreactor systems hold many potential benefits over batch reactors allowing: high surface-to-volume ratio, fine adjustment of chemical reaction residence times, small thermal inertia and fast changes in temperature. Advantages of multilayer green ceramics for microprocess applications include: LTCC substrate is chemically inert to most solvents, it has a high contact angle, presents low thermal coefficient of expansion, can withstand high operational temperatures and high internal pressures. For these reasons, LTCC-based microsystem technologies allow the implementation of different unitary operations for chemical process, making it an enabling technology for the miniaturization of chemical processes. In fact, recently LTCC microfluidic reactors have been used to produce micro and nanoparticles with excellent control of size distribution and morphology. The present work provides a report on the performance of a 3D LTCC flow focusing Microfluidic reactor designed to fabricate Nanoparticles using nano precipitation through an anti-solvent, with electric potential size tuning. We also implement an approach to nanoparticle production scale-out.


Author(s):  
Héctor Botero ◽  
Hernán Álvarez

This paper proposes a new composite observer capable of estimating the states and unknown (or changing) parameters of a chemical process, using some input-output measurements, the phenomenological based model and other available knowledge about the process. The proposed composite observer contains a classic observer (CO) to estimate the state variables, an observer-based estimator (OBE) to obtain the actual values of the unknown or changing parameters needed to tune the CO, and an asymptotic observer (AO) to estimate the states needed as input to the OBE. The proposed structure was applied to a CSTR model with three state variables. With the proposed structure, the concentration of reactants and other CSTR parameters can be estimated on-line if the reactor and jacket temperatures are known. The procedure for the design of the proposed structure is simple and guarantees observer convergence. In addition, the convergence speed of state and parameter estimation can be adjusted independently.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1097
Author(s):  
Francisco J. Hernández Fernández ◽  
Antonia Pérez de los Ríos

Sustainable chemical process engineering results from applying the principles of green chemistry or sustainable chemistry to chemical process engineering [...]


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 662
Author(s):  
Nikita A. Filatov ◽  
Anatoly A. Evstrapov ◽  
Anton S. Bukatin

Droplet microfluidics is an extremely useful and powerful tool for industrial, environmental, and biotechnological applications, due to advantages such as the small volume of reagents required, ultrahigh-throughput, precise control, and independent manipulations of each droplet. For the generation of monodisperse water-in-oil droplets, usually T-junction and flow-focusing microfluidic devices connected to syringe pumps or pressure controllers are used. Here, we investigated droplet-generation regimes in a flow-focusing microfluidic device induced by the negative pressure in the outlet reservoir, generated by a low-cost mini diaphragm vacuum pump. During the study, we compared two ways of adjusting the negative pressure using a compact electro-pneumatic regulator and a manual airflow control valve. The results showed that both types of regulators are suitable for the stable generation of monodisperse droplets for at least 4 h, with variations in diameter less than 1 µm. Droplet diameters at high levels of negative pressure were mainly determined by the hydrodynamic resistances of the inlet microchannels, although the absolute pressure value defined the generation frequency; however, the electro-pneumatic regulator is preferable and convenient for the accurate control of the pressure by an external electric signal, providing more stable pressure, and a wide range of droplet diameters and generation frequencies. The method of droplet generation suggested here is a simple, stable, reliable, and portable way of high-throughput production of relatively large volumes of monodisperse emulsions for biomedical applications.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 229 ◽  
Author(s):  
Dongjin Lee ◽  
Chaenyung Cha

Tumor spheroids are considered a valuable three dimensional (3D) tissue model to study various aspects of tumor physiology for biomedical applications such as tissue engineering and drug screening as well as basic scientific endeavors, as several cell types can efficiently form spheroids by themselves in both suspension and adherent cell cultures. However, it is more desirable to utilize a 3D scaffold with tunable properties to create more physiologically relevant tumor spheroids as well as optimize their formation. In this study, bioactive spherical microgels supporting 3D cell culture are fabricated by a flow-focusing microfluidic device. Uniform-sized aqueous droplets of gel precursor solution dispersed with cells generated by the microfluidic device are photocrosslinked to fabricate cell-laden microgels. Their mechanical properties are controlled by the concentration of gel-forming polymer. Using breast adenocarcinoma cells, MCF-7, the effect of mechanical properties of microgels on their proliferation and the eventual spheroid formation was explored. Furthermore, the tumor cells are co-cultured with macrophages of fibroblasts, which are known to play a prominent role in tumor physiology, within the microgels to explore their role in spheroid formation. Taken together, the results from this study provide the design strategy for creating tumor spheroids utilizing mechanically-tunable microgels as 3D cell culture platform.


2021 ◽  
Vol 1 (1) ◽  
pp. 50-69
Author(s):  
Wilson Uzochukwu Eze ◽  
◽  
Reginald Umunakwe ◽  
Henry Chinedu Obasi ◽  
Michael Ifeanyichukwu Ugbaja ◽  
...  

<abstract> <p>The world is today faced with the problem of plastic waste pollution more than ever before. Global plastic production continues to accelerate, despite the fact that recycling rates are comparatively low, with only about 15% of the 400 million tonnes of plastic currently produced annually being recycled. Although recycling rates have been steadily growing over the last 30 years, the rate of global plastic production far outweighs this, meaning that more and more plastic is ending up in dump sites, landfills and finally into the environment, where it damages the ecosystem. Better end-of-life options for plastic waste are needed to help support current recycling efforts and turn the tide on plastic waste. A promising emerging technology is plastic pyrolysis; a chemical process that breaks plastics down into their raw materials. Key products are liquid resembling crude oil, which can be burned as fuel and other feedstock which can be used for so many new chemical processes, enabling a closed-loop process. The experimental results on the pyrolysis of thermoplastic polymers are discussed in this review with emphasis on single and mixed waste plastics pyrolysis liquid fuel.</p> </abstract>


2020 ◽  
Vol 10 (2) ◽  
pp. 2258-2271

Inceptions for chemical process automation are presented in this study. A chemical process demonstrated by neutralization reaction was designed, built, and tested experimentally towards evaluating automation and control algorithms through the Arduino Mega platform. The main objective parameter in this work was selected to be the product pH value, which was evaluated based on several scenarios that targeted various changes in direct and indirect effects. Two main branched ideas were investigated in this study; the first was dealt with the application of Arduino board in the automation of chemical process; the second was dedicated to studying integration of Arduino board in controlling the targeted pH parameter in the product side. Upon examining different automation scenarios, an algorithm was developed to approach the product quality of specific pH and temperature efficiently. The automation algorithm was further developed by integrating the process dynamics and control concepts towards speeding up the pH set point's reach. To make this happen, the pump's speed was corrected and tuned based on the feedback signal from the pH sensor. Consequently, the setpoint was reached in shorter periods, attaining considerable savings in time (≈ 35%). Based on the study outcomes, it is believed that Arduino open source is a challenging and promising low-cost platform, proved useful for mimicking control and automation of chemical processes.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 743
Author(s):  
Zhaoqin Yin ◽  
Zemin Huang ◽  
Xiaohui Lin ◽  
Xiaoyan Gao ◽  
Fubing Bao

The demand for highly controllable droplet generation methods is very urgent in the medical, materials, and food industries. The droplet generation in a flow-focusing microfluidic device with external mechanical vibration, as a controllable droplet generation method, is experimentally studied. The effects of vibration frequency and acceleration amplitude on the droplet generation are characterized. The linear correlation between the droplet generation frequency and the external vibration frequency and the critical vibration amplitude corresponding to the imposing vibration frequency are observed. The droplet generation frequency with external mechanical vibration is affected by the natural generation frequency, vibration frequency, and vibration amplitude. The droplet generation frequency in a certain microfluidic device with external vibration is able to vary from the natural generation frequency to the imposed vibration frequency at different vibration conditions. The evolution of dispersed phase thread with vibration is remarkably different with the process without vibration. Distinct stages of expansion, shrinkage, and collapse are observed in the droplet formation with vibration, and the occurrence number of expansion–shrinkage process is relevant with the linear correlation coefficient.


Sign in / Sign up

Export Citation Format

Share Document