Wave Interactions and Stability of Riemann Solutions to the Aw-Rascle Model with Friction for Modified Chaplygin Gas

Author(s):  
Shuai Fan ◽  
Yu Zhang
2021 ◽  
Vol 62 (4) ◽  
pp. 041501
Author(s):  
Weifeng Jiang ◽  
Tong Li ◽  
Zhen Wang ◽  
Shutian Fang

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Yongqiang Fan ◽  
Lihui Guo ◽  
Gan Yin

This paper studies the convergence of Riemann solutions to the inhomogeneous modified Chaplygin gas equations as the pressure vanishes. The delta shock waves and vacuum states occur as the pressure vanishes. The Riemann solutions of inhomogeneous modified Chaplygin gas equations are no longer self-similar. It is obviously different from the Riemann solutions of homogeneous modified Chaplygin gas equations. When the pressure vanishes, the Riemann solutions of the modified Chaplygin gas equations with a coulomb-like friction term converge to the Riemann solutions of the pressureless Euler system with a source term.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Yujin Liu ◽  
Wenhua Sun

This paper is concerned with the perturbed Riemann problem for the Aw-Rascle model with the modified Chaplygin gas pressure. We obtain constructively the solutions when the initial values are three piecewise constant states. The global structure and the large-time asymptotic behaviors of the solutions are discussed case by case. Further, we obtain the stability of the corresponding Riemann solutions as the initial perturbed parameter tends to zero.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Hongjun Cheng ◽  
Hanchun Yang

This paper is devoted to the study of a nonsymmetric Keyfitz-Kranzer system of conservation laws with the generalized and modified Chaplygin gas pressure law, which may admit delta shock waves, a topic of interest. Firstly, we solve the Riemann problems with piecewise constant data having a single discontinuity. For the generalized Chaplygin gas pressure law, the solution consists of three different structures:R+J,S+J, andδ. Existence and uniqueness of delta shock solution are established under the generalized Rankine-Hugoniot relation and entropy condition. For the modified Chaplygin gas pressure law, the structures of solution areR+JandS+J. Secondly, we discuss the limits of Riemann solutions for the modified Chaplygin gas pressure law as the pressure law tends to the generalized Chaplygin gas one. In particular, for some cases, the solutionS+Jtends to a delta shock wave, and it is different from the delta shock wave for the generalized Chaplygin gas pressure law with the same initial data. Thirdly, we simulate the Riemann solutions and examine the formation process of delta shock wave by employing the Nessyahu-Tadmor scheme. The numerical results are coincident with the theoretical analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ali Osman Yılmaz ◽  
Ertan Güdekli

AbstractWe investigate Friedmann–Lamaitre–Robertson–Walker (FLRW) models with modified Chaplygin gas and cosmological constant, using dynamical system methods. We assume $$p=(\gamma -1)\mu -\dfrac{A}{\mu ^\alpha }$$ p = ( γ - 1 ) μ - A μ α as equation of state where $$\mu$$ μ is the matter-energy density, p is the pressure, $$\alpha$$ α is a parameter which can take on values $$0<\alpha \le 1$$ 0 < α ≤ 1 as well as A and $$\gamma$$ γ are positive constants. We draw the state spaces and analyze the nature of the singularity at the beginning, as well as the fate of the universe in the far future. In particular, we address the question whether there is a solution which is stable for all the cases.


2015 ◽  
Vol 2015 (2) ◽  
Author(s):  
Jianbo Lu ◽  
Danhua Geng ◽  
Lixin Xu ◽  
Yabo Wu ◽  
Molin Liu

Sign in / Sign up

Export Citation Format

Share Document