Epitope analysis of GAD65 autoantibodies in adult-onset type 1 diabetes and latent autoimmune diabetes in adults with thyroid autoimmunity

2011 ◽  
Vol 48 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Ping Jin ◽  
Gan Huang ◽  
Jian Lin ◽  
Shuoming Luo ◽  
Zhiguang Zhou
Diabetes Care ◽  
2005 ◽  
Vol 28 (7) ◽  
pp. 1803-1804 ◽  
Author(s):  
P. W. S. Rosario ◽  
J. S. Reis ◽  
R. Amim ◽  
T. A. Fagundes ◽  
M. R. Calsolari ◽  
...  

2019 ◽  
Vol 15 (3) ◽  
pp. 199-204 ◽  
Author(s):  
Elin Pettersen Sørgjerd

Autoantibodies against Glutamic Acid Decarboxylase (GADA), insulinoma antigen-2 (IA- 2A), insulin (IAA) and the most recently Zinc Transporter 8 (ZnT8A) are one of the most reliable biomarkers for autoimmune diabetes in both children and adults. They are today the only biomarkers that can distinguish Latent Autoimmune Diabetes in Adults (LADA) from phenotypically type 2 diabetes. As the frequency of autoantibodies at diagnosis in childhood type 1 diabetes depends on age, GADA is by far the most common in adult onset autoimmune diabetes, especially LADA. Being multiple autoantibody positive have also shown to be more common in childhood diabetes compared to adult onset diabetes, and multiple autoantibody positivity have a high predictive value of childhood type 1 diabetes. Autoantibodies have shown inconsistent results to predict diabetes in adults. Levels of autoantibodies are reported to cause heterogeneity in LADA. Reports indicate that individuals with high levels of autoantibodies have a more type 1 diabetes like phenotype and individuals with low levels of autoantibody positivity have a more type 2 diabetes like phenotype. It is also well known that autoantibody levels can fluctuate and transient autoantibody positivity in adult onset autoimmune diabetes have been reported to affect the phenotype.


2021 ◽  
Author(s):  
Nicholas J Thomas ◽  
Helen C Walkey ◽  
Akaal Kaur ◽  
Shivani Misra ◽  
Nick S Oliver ◽  
...  

AbstractObjectiveIslet autoantibodies at diagnosis are not well studied in older-adult onset (>30years) type 1 diabetes due to difficulties of accurate diagnosis. We used a type 1 diabetes genetic risk score (T1DGRS) to identify type 1 diabetes aiming to evaluate the prevalence and pattern of autoantibodies in older-adult onset type 1 diabetes.MethodsWe used a 30 variant T1DGRS in 1866 white-European individuals to genetically confirm a clinical diagnosis of new onset type 1 diabetes. We then assessed the prevalence and pattern of GADA, IA2A and ZnT8A within genetically consistent type 1 diabetes across three age groups (<18years (n=702), 18-30years (n=524) and >30years (n=588)).FindingsIn autoantibody positive cases T1DGRS was consistent with 100% type 1 diabetes in each age group. Conversely in autoantibody negative cases, T1DGRS was consistent with 93%(56/60) of <18years, 55%(37/67) of 18-30years and just 23%(34/151) of >30years having type 1 diabetes. Restricting analysis to genetically consistent type 1 diabetes showed similar proportions of positive autoantibodies across age groups (92% <18years, 92% 18-30years, 93% >30years)[p=0.87]. GADA was the most common autoantibody in older-adult onset type 1 diabetes, identifying 95% of autoantibody positive cases versus 72% in those <18years.InterpretationOlder adult-onset type 1 diabetes has identical rates but different patterns of positive autoantibodies to childhood onset. In clinically suspected type 1 diabetes in older-adults, absence of autoantibodies strongly suggests non-autoimmune diabetes. Our findings suggest the need to change guidelines from measuring islet autoantibodies where there is diagnostic uncertainty to measuring at least GADA in all suspected adult type 1 diabetes cases.


Diabetologia ◽  
2021 ◽  
Author(s):  
Nicholas J. Thomas ◽  
John M. Dennis ◽  
Seth A. Sharp ◽  
Akaal Kaur ◽  
Shivani Misra ◽  
...  

Abstract Aims/hypothesis Among white European children developing type 1 diabetes, the otherwise common HLA haplotype DR15-DQ6 is rare, and highly protective. Adult-onset type 1 diabetes is now known to represent more overall cases than childhood onset, but it is not known whether DR15-DQ6 is protective in older-adult-onset type 1 diabetes. We sought to quantify DR15-DQ6 protection against type 1 diabetes as age of onset increased. Methods In two independent cohorts we assessed the proportion of type 1 diabetes cases presenting through the first 50 years of life with DR15-DQ6, compared with population controls. In the After Diabetes Diagnosis Research Support System-2 (ADDRESS-2) cohort (n = 1458) clinician-diagnosed type 1 diabetes was confirmed by positivity for one or more islet-specific autoantibodies. In UK Biobank (n = 2502), we estimated type 1 diabetes incidence rates relative to baseline HLA risk for each HLA group using Poisson regression. Analyses were restricted to white Europeans and were performed in three groups according to age at type 1 diabetes onset: 0–18 years, 19–30 years and 31–50 years. Results DR15-DQ6 was protective against type 1 diabetes through to age 50 years (OR < 1 for each age group, all p < 0.001). The following ORs for type 1 diabetes, relative to a neutral HLA genotype, were observed in ADDRESS-2: age 5–18 years OR 0.16 (95% CI 0.08, 0.31); age 19–30 years OR 0.10 (0.04, 0.23); and age 31–50 years OR 0.37 (0.21, 0.68). DR15-DQ6 also remained highly protective at all ages in UK Biobank. Without DR15-DQ6, the presence of major type 1 diabetes high-risk haplotype (either DR3-DQ2 or DR4-DQ8) was associated with increased risk of type 1 diabetes. Conclusions/interpretation HLA DR15-DQ6 confers dominant protection from type 1 diabetes across the first five decades of life. Graphical abstract


MethodsX ◽  
2021 ◽  
pp. 101452
Author(s):  
Feliciana Real-Fernández ◽  
Alessandra Gallo ◽  
Francesca Nuti ◽  
Lorenzo Altamore ◽  
Gloria Giovanna Del Vescovo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document