risk haplotype
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 77)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Vol 11 (1) ◽  
pp. 37
Author(s):  
Ioana S. Barac ◽  
Mihaela Iancu ◽  
Vitalie Văcăraș ◽  
Angela Cozma ◽  
Vasile Negrean ◽  
...  

(1) Background: interleukin 23 (IL-23) and interleukin 27 (IL-27) modulate the activity of T helper 17 cells (Th17) with critical roles in autoimmune diseases and multiple sclerosis (MS). The genes responsible for cytokine generation are highly influenced by the presence of single nucleotide polymorphisms (SNP) in main regions such as regulatory sequences or in promoter regions, contributing to disease susceptibility and evolution. The present study analyzed the associations of IL-23 and IL-27 SNPs with susceptibility to multiple sclerosis. (2) Methods: We performed a case-control study including 252 subjects: 157 patients diagnosed with MS and 95 controls. We used polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to determine the genotypes for IL-27 T4730С (rs 181206), IL-27 A964G (rs 153109), and IL-23 receptor gene (IL-23R) G1142A (rs 11209026). (3) Results: The IL27-T4730С gene polymorphism was significantly associated with an increased odds of MS under the dominant genetic model (TC + CC variant genotypes, adjusted odds ratio OR = 4.06, 95% CI: 2.14–7.83, p-value = 0.000007, Q-value = 0.000063). Individuals carrying the IL-27 A924G variant (AG + GG) genotype presented higher odds of MS compared to non-carriers under the dominant model (adjusted OR = 1.93, 95% CI: 1.05–3.51, p-value = 0.0324, Q-value = 0.05832) and the allelic genetic model (unadjusted p-value = 0.015, OR = 1.58, 95% CI: 1.09–2.28), while IL-23-R381Q SNP conferred a decreased odds of MS under a codominant model of inheritance (adjusted OR = 0.26, 95% CI: 0.08–0.92, p-value = 0.0276, Q-value = 0.058) and an allelic model (unadjusted p-value = 0.008, OR = 0.23, 95% CI: 0.07–0.75). In an additive model with adjustment for age group (≤40 years vs. >40 years), sex and smoking, patients carrying the G-C (A964G, T4730C) haplotype had a 3.18 increased risk (95% CI: 1.74–5.81, p < 0.001) to develop multiple sclerosis. (4) Conclusions: The results of the current study showed a significant relationship of IL-27-A964G and IL-27-T4730C polymorphisms with increased risk of MS, and also the protective role of the IL-23-R381Q polymorphism. Moreover, the haplotype-based analysis proposed the mutant G-C (A924G, T4730C) as a significant risk haplotype for the development of MS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniela Vejrazkova ◽  
Josef Vcelak ◽  
Eliska Vaclavikova ◽  
Marketa Vankova ◽  
Katerina Zajickova ◽  
...  

BackgroundApproximately half of patients diagnosed with Graves’ disease (GD) relapse within two years of thyreostatic drug withdrawal. It is then necessary to decide whether to reintroduce conservative treatment that can have serious side effects, or to choose a radical approach. Familial forms of GD indicate a significant genetic component. Our aim was to evaluate the practical benefits of HLA and PTPN22 genetic testing for the assessment of disease recurrence risk in the Czech population.MethodsIn 206 patients with GD, exon 2 in the HLA genes DRB1, DQA1, DQB1 and rs2476601 in the gene PTPN22 were sequenced.ResultsThe risk HLA haplotype DRB1*03-DQA1*05-DQB1*02 was more frequent in our GD patients than in the general European population. During long-term retrospective follow-up (many-year to lifelong perspective), 87 patients relapsed and 26 achieved remission lasting over 2 years indicating a 23% success rate for conservative treatment of the disease. In 93 people, the success of conservative treatment could not be evaluated (thyroidectomy immediately after the first attack or ongoing antithyroid therapy). Of the examined genes, the HLA-DQA1*05 variant reached statistical significance in terms of the ability to predict relapse (p=0.03). Combinations with either both other HLA risk genes forming the risk haplotype DRB1*03-DQA1*05-DQB1*02 or with the PTPN22 SNP did not improve the predictive value.Conclusionthe DQA1*05 variant may be a useful prognostic marker in patients with an unclear choice of treatment strategy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 313-313
Author(s):  
Derek W Brown ◽  
Youjin Wang ◽  
Andrew St. Martin ◽  
Stephen R. Spellman ◽  
Shu-Hong Lin ◽  
...  

Abstract Introduction: Myelofibrosis (MF) is a rare myeloproliferative neoplasm (MPN) characterized by bone marrow fibrosis, progressive bone marrow failure, and increased risk of acute myeloid leukemia. While MF arises from somatic driver mutations in JAK2, MPL, and CALR, some MPN patients may have a heritable component. To comprehensively examine the genetic etiology of MF, we performed the first integrative analysis of SNP array genotyping (using Infinium Global Screening Array), targeted long-read sequencing (using PacBio SMRT sequencing) and telomere length (TL, using qPCR assay). Methods: Our study included 937 MF patients who received an allogeneic hematopoietic cell transplant (HCT) between 2000 and 2016 and had an available pre-HCT blood sample at the Center for International Blood and Marrow Transplant Research Repository. Somatic mosaic chromosomal alterations (mCAs, including deletions, duplications, or copy-neutral losses-of-heterozygosity (CNLOH)) were called with the Mosaic Chromosomal Alteration (MoChA) algorithm using raw genotyping intensity data. A genome-wide association study (GWAS) was restricted to include 827 MF patients of European ancestry and utilized 4,135 genetically-matched healthy controls. Results: GWAS identified six independent MF susceptibility loci at genome-wide significance (P&lt; 5×10 -8); four of which replicate prior MPN susceptibility loci [9p24.1(JAK2), 5p15.33(TERT), 3q25.33(IFT80), and 4q24(TET2)] and two novel MF loci [6p21.35(HLA-DQB1-AS1) and 17p13.1(TP53)] (Figure 1). A transcriptome-wide association analysis using whole blood GTEx data highlighted the 9p24.1 locus with increased JAK2 expression associated with elevated risk of MF (P= 2.18×10 -19). A strong colocalization statistic further indicated shared genetic component between eQTL and this JAK2 locus (HyPrColoc Posterior Probability= 0.6) (Figure 2). Based on the strong signal identified at TERT (Figure 1), we investigated the relationship between MF risk and genetically-inferred telomere length using a panel of 19 germline variants previously found to be associated with telomere length. Of the 19 telomere-length associated variants investigated, 7 were found to be associated with MF risk (binomial P= 2.31×10 -5, linear trend P= 5.48×10 -4) (Figure 3). Both Mendelian randomization and genome-wide genetic correlation analyses further indicated that increased risk of MF was associated with longer inherited telomere length. Utilizing available clinical mutation data on a subset of 185 patients, MF cases carrying the germline risk haplotype of the 9p24.1(JAK2) susceptibility locus were observed to more frequently have the JAK2 V617F mutation (71% vs 59%; P= 0.02). Targeted PacBio long-read sequencing around JAK2 provided further evidence of linkage between the germline risk allele and the JAK2 V617F mutation. Detectable autosomal mCAs were also abundant in MF cases with 67.4% having at least one mCA (compared to ~3% in the general population) and 27.6% having an mCA spanning JAK2 (mostly CNLOH) (Figure 4). In addition, using a binomial test for biased allelic imbalance, a cis relationship was identified at 9p24.1 in which the MF risk haplotype was predominantly duplicated by CNLOH (binomial P=1.36×10 -9). Regional sequencing of JAK2 further confirmed duplication of JAK2 V617F by CNLOH. Finally, we observed an inverse association between autosomal mCAs and qPCR measured telomere length (OR= 0.22, 95% CI= 0.07-0.65, P= 6.40×10 -3). These results were consistent by mCA chromosomal region and copy number state. Conclusion: Our results suggest a molecular framework for the genetic etiology of MF in which both genetically-inferred telomere length and germline variation at JAK2 are associated with increased MF risk. The 9p24.1 risk haplotype predisposes to the acquisition of a somatic JAK2 V617F mutation in cis and subsequent duplication of JAK2 V617F by mCAs (usually CNLOH). This process leads to aberrant JAK2 activity and increased clonal proliferation, accelerating telomere length shortening and increasing genomic instability in patients with MF. Figure 1 Figure 1. Disclosures Gupta: AbbVie: Consultancy, Honoraria; Constellation Pharma: Consultancy, Honoraria; Roche: Consultancy; Pfizer: Consultancy; BMS-Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Sierra Oncology: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Honoraria, Research Funding. Lee: Janssen: Other; Incyte: Research Funding; AstraZeneca: Research Funding; Kadmon: Research Funding; National Marrow Donor Program: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Research Funding; Syndax: Research Funding; Takeda: Research Funding; Amgen: Research Funding. Saber: Govt. COI: Other.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lianne M. Reus ◽  
Iris E. Jansen ◽  
Merel O. Mol ◽  
Fred van Ruissen ◽  
Jeroen van Rooij ◽  
...  

AbstractGenetic factors play a major role in frontotemporal dementia (FTD). The majority of FTD cannot be genetically explained yet and it is likely that there are still FTD risk loci to be discovered. Common variants have been identified with genome-wide association studies (GWAS), but these studies have not systematically searched for rare variants. To identify rare and new common variant FTD risk loci and provide more insight into the heritability of C9ORF72-related FTD, we performed a GWAS consisting of 354 FTD patients (including and excluding N = 28 pathological repeat carriers) and 4209 control subjects. The Haplotype Reference Consortium was used as reference panel, allowing for the imputation of rare genetic variants. Two rare genetic variants nearby C9ORF72 were strongly associated with FTD in the discovery (rs147211831: OR = 4.8, P = 9.2 × 10−9, rs117204439: OR = 4.9, P = 6.0 × 10−9) and replication analysis (P < 1.1 × 10−3). These variants also significantly associated with amyotrophic lateral sclerosis in a publicly available dataset. Using haplotype analyses in 1200 individuals, we showed that these variants tag a sub-haplotype of the founder haplotype of the repeat expansion that was previously found to be present in virtually all pathological C9ORF72 G4C2 repeat lengths. This new risk haplotype was 10 times more likely to contain a C9ORF72 pathological repeat length compared to founder haplotypes without one of the two risk variants (~22% versus ~2%; P = 7.70 × 10−58). In haplotypes without a pathologic expansion, the founder risk haplotype had a higher number of repeats (median = 12 repeats) compared to the founder haplotype without the risk variants (median = 8 repeats) (P = 2.05 × 10−260). In conclusion, the identified risk haplotype, which is carried by ~4% of all individuals, is a major risk factor for pathological repeat lengths of C9ORF72 G4C2. These findings strongly indicate that longer C9ORF72 repeats are unstable and more likely to convert to germline pathological C9ORF72 repeat expansions.


2021 ◽  
Vol 5 (3) ◽  
pp. 036102
Author(s):  
Evan L. Teng ◽  
Evan M. Masutani ◽  
Benjamin Yeoman ◽  
Jessica Fung ◽  
Rachel Lian ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Hongjing Yan ◽  
Ruoyi Guo ◽  
Weifeng Chen ◽  
Xutao Xi ◽  
Lianchang Wang ◽  
...  

Objectives: Interleukin (IL)-1 receptor-associated kinase 1 (IRAK1) is a very important immunomodulatory gene for autoimmune diseases located on the X chromosome. However, there was little study about the correlation of IRAK1 functional single nucleotide polymorphisms with mRNA expression in neuromyelitis optica spectrum disorder (NMOSD) patients. In this study, we aimed to investigate the plausible association of IRAK1 polymorphism, IRAK1 mRNA expression, and NMOSD risk in the northern Chinese Han population.Methods: Four loci of IRAK1 gene (rs1059702, rs7061789, rs1059703, and rs3027898) were genotyped using multiplex SNaPshot technique in 102 NMOSD patients and 213 healthy subjects. Allele, genotype, and haplotype frequencies were compared. Stratified analyses were conducted by age, sex, AQP4 status, and age of onset. IRAK1 mRNA levels in the peripheral blood mononuclear cells of 30 NMOSD patients (of active phase) and 15 healthy control subjects were detected using qPCR. The correlations between the SNP polymorphisms and mRNA expression levels of genes were tested using non-parametric tests.Results: The minor allele frequencies (MAF) of these four locis were significantly lower in NMOSD cases than that of the controls. The frequencies of rs1059703G/G genotype, rs1059702A/A genotype, rs3027898 C/C genotype, and rs7061789G/G genotype were higher in the case group than that of the control group. Haplotype analysis revealed that the major haplotype “G-A-C-G” (alleles in the order of SNPs rs1059703, rs1059702, rs3027898, and rs7061789), containing the risk alleles, conferred an adverse effect on NMOSD. The level of IRAK1mRNA was markedly higher in NMOSD when compared to the healthy control groups. The IRAK1mRNA levels of female patients with the major haplotype were significantly higher compared to those with other haplotypes and to the male patients with the same genotype.Conclusion: IRAK1 polymorphisms were highly correlated with NMOSD susceptibility. Its haplotype G-A-C-G (rs1059703-rs1059702-rs3027898-rs7061789) confers increasing the risk of NMOSD in female patients. The IRAK1 risk haplotype G-A-C-G upregulated IRAK1 mRNA expression in female NMOSD patients. Our study provides a novel insight into the molecular mechanism of the pathogenesis of NMOSD and reveals that IRAK1 is the potential mechanism-specific druggable target in NMOSD disease.


2021 ◽  
pp. 1-8
Author(s):  
Hannah Rostalski ◽  
Ville Korhonen ◽  
Teemu Kuulasmaa ◽  
Eino Solje ◽  
Johanna Krüger ◽  
...  

Background: C9orf72 repeat expansion (C9exp) is the most common genetic cause underlying frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, detection of the C9exp requires elaborative methods. Objective: Identification of C9exp carriers from genotyped cohorts could be facilitated by using single nucleotide polymorphisms (SNPs) as markers for the C9exp. Methods: We elucidated the potential of the previously described Finnish risk haplotype, defined by the SNP rs3849942, to identify potential C9exp carriers among 218,792 Finns using the FinnGen database. The haplotype approach was first tested in an idiopathic normal pressure hydrocephalus (iNPH) patient cohort (European Alzheimer’s Disease DNA BioBank) containing C9exp carriers by comparing intermediate (15–30) and full-length (>  60 repeats) C9exp carriers (n = 41) to C9exp negative patients (<  15 repeats, n = 801). Results: In this analysis, rs3849942 was associated with carriership of C9exp (OR 8.44, p <  2×10–15), while the strongest association was found with rs139185008 (OR 39.4, p <  5×10–18). Unbiased analysis of rs139185008 in FinnGen showed the strongest association with FTLD (OR 4.38, 3×10–15) and motor neuron disease ALS (OR 5.19, 3×10–21). rs139185008 was the top SNP in all diseases (iNPH, FTLD, ALS), and further showed a strong association with ALS in the UK Biobank (p = 9.0×10–8). Conclusion: Our findings suggest that rs139185008 is a useful marker to identify potential C9exp carriers in the genotyped cohorts and biobanks originating from Finland.


2021 ◽  
Author(s):  
Fahri Küçükali ◽  
Katrin Nußbaumer ◽  
Jasper Van Dongen ◽  
Elisabeth Hens ◽  
Céline Bellenguez ◽  
...  

Genome-wide association studies (GWAS) have identified more than 75 genetic risk loci for Alzheimer's Disease (AD), however for a substantial portion of these loci the genetic variants or genes directly involved in AD risk remain to be found. A GWAS locus defined by the index SNP rs1476679 in ZCWPW1 is one of the largest AD loci as the association signal spans 56 potential risk genes. The three most compelling candidate genes in this locus are ZCWPW1, PILRA and PILRB, based on genetic, transcriptomic, and proteomic evidence. We performed amplicon-based target enrichment and next-generation sequencing of the exons, exon-intron boundaries, and UTRs of ZCWPW1, PILRA and PILRB on an Illumina MiSeq platform in 1048 Flanders-Belgian late-onset AD patients and 1037 matched healthy controls. Along with the single-marker association testing, the combined effect of Sanger-validated rare variants was evaluated in SKAT-O. No common variants (n = 40) were associated with AD. We identified 20 validated deleterious rare variants (MAF < 1%, CADD score ≥ 20), 14 of which in ZCWPW1. This included 4 predicted loss-of-function (LoF) mutations that were exclusively found in patients (P = 0.011). Haplotype sharing analysis revealed distant common ancestors for two LoF mutations. Single-molecule long-read Nanopore sequencing analysis unveiled that all LoF mutations are phased with the risk haplotype in the locus. Our results support the recent report for the role of ultra-rare LoF ZCWPW1 variants in AD and suggest a potential risk mechanism for AD through ZCWPW1 haploinsufficiency.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1210
Author(s):  
Hila Kobo ◽  
Orly Goldstein ◽  
Mali Gana-Weisz ◽  
Anat Bar-Shira ◽  
Tanya Gurevich ◽  
...  

Pathogenic C9orf72-G4C2 repeat expansions are associated with ALS/FTD, but not with Parkinson’s disease (PD); yet the possible link between intermediate repeat lengths and PD remains inconclusive. We aim to study the potential involvement of these repeats in PD. The number of C9orf72-repeats were determined by flanking and repeat-primed PCR assays, and the risk-haplotype was determined by SNP-array. Their association with PD was assessed in a stratified manner: in PD-patients-carriers of mutations in LRRK2, GBA, or SMPD1 genes (n = 388), and in PD-non-carriers (NC, n = 718). Allelic distribution was significantly different only in PD-NC compared to 600 controls when looking both at the allele with higher repeat’s size (p = 0.034) and at the combined number of repeats from both alleles (p = 0.023). Intermediate repeats (20–60 repeats) were associated with PD in PD-NC patients (p = 0.041; OR = 3.684 (CI 1.05–13.0)) but not in PD-carriers (p = 0.684). The C9orf72 risk-haplotype, determined in a subgroup of 588 PDs and 126 controls, was observed in higher frequency in PD-NC (dominant model, OR = 1.71, CI 1.04–2.81, p = 0.0356). All 19 alleles within the risk-haplotype were associated with higher C9orf72 RNA levels according to the GTEx database. Based on our data, we suggest a model in which intermediate repeats are a risk factor for PD in non-carriers, driven not only by the number of repeats but also by the variants’ genotypes within the risk-haplotype. Further studies are needed to elucidate this possible role of C9orf72 in PD pathogenesis.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 840
Author(s):  
Qiaofeng Zhao ◽  
Satoshi Koyama ◽  
Nagisa Yoshihara ◽  
Atsushi Takagi ◽  
Etsuko Komiyama ◽  
...  

We recently discovered a nonsynonymous variant in the coiled-coil alpha-helical rod protein 1 (CCHCR1) gene within the alopecia areata (AA) risk haplotype. We also reported that the engineered mice with this risk allele exhibited. To investigate more about the involvement of the CCHCR1 gene in AA pathogenesis, we developed an AA model using C57BL/6N cchcr1 gene knockout mice. In this study, mice (6–8 weeks) were divided into two groups: cchcr1−/− mice and wild-type (WT) littermates. Both groups were subjected to a water avoidance stress (WAS) test. Eight weeks after the WAS test, 25% of cchcr1−/− mice exhibited non-inflammatory foci of alopecia on the dorsal skin. On the other hand, none of wild-type littermates cause hair loss. The foci resembled human AA in terms of gross morphology, trichoscopic findings and histological findings. Additionally, gene expression microarray analysis of cchcr1−/− mice revealed abnormalities of hair related genes compared to the control. Our results strongly suggest that CCHCR1 is associated with AA pathogenesis and that cchcr1−/− mice are a good model for investigating AA.


Sign in / Sign up

Export Citation Format

Share Document