Genetic diversity in common wheat lines revealed by fluorescence in situ hybridization

2019 ◽  
Vol 305 (3) ◽  
pp. 247-254
Author(s):  
Jun Guo ◽  
Dan Gao ◽  
Wenping Gong ◽  
Haosheng Li ◽  
Jianbo Li ◽  
...  
Genome ◽  
2021 ◽  
Author(s):  
Xiu Yang ◽  
Binwen Tan ◽  
Yulu Yang ◽  
Xiaohui Zhang ◽  
Wei Zhu ◽  
...  

Understanding the genetic diversity of wheat is important for wheat breeding and improvement. However, there have been limited attempts to evaluate wheat diversity using fluorescence in situ hybridization (FISH). In this study, the chromosomal structures of 149 wheat accessions from 13 countries located between the latitudes of 30° and 45°N, the principal growing region for wheat, were characterized using FISH with pTa535 and pSc119.2 probes. The ranges of the numbers of FISH types in the A-, B-, and D-genomes were 2–8, 3–7, and 2–4, respectively, and the average numbers in the A- and B-genomes were greater than in the D-genome. Chromosomal translocations were detected by these probes, and previously undescribed translocations were also observed. Using the FISH, the genetic relationships among the 149 common wheat lines were divided into three groups (G1, G2, and G3). G1 mainly consisted of Southern European lines, G2 consisted of most lines from Japan and some lines from Western Asia, China, and Korea, and G3 consisted of the other lines from Southern Europe and most of the lines from Western Asia, China, and Korea. FISH karyotypes of wheat chromosomes distinguished chromosomal structural variations, revealed the genetic diversity among wheat varieties. Furthermore, these results provide valuable information for the further genetic improvement of wheat in China.


Genome ◽  
1999 ◽  
Vol 42 (5) ◽  
pp. 1013-1019 ◽  
Author(s):  
Marco Biagetti ◽  
Francesca Vitellozzi ◽  
Carla Ceoloni

Fluorescence in situ hybridization (FISH) with multiple probes, consisting of highly repeated DNA sequences (pSc119.2 and pAs1) and of a low-copy, 3BS-specific RFLP sequence (PSR907), enabled determination of the physical position of the wheat-alien breakpoints (BPs) along the 3BS and 3DS arms of common wheat recombinant lines. These lines harbour 3SlS Aegilops longissima segments containing the powdery mildew resistance gene Pm13. In all 3B recombinants, the wheat-Aegilops longissima physical BPs lie within the interval separating the two most distal of the three pSc119.2 3BS sites. In all such recombinants a telomeric segment, containing the most distal of the pSc119.2 3BS sites, was in fact replaced by a homoeologous Ae. longissima segment, marked by characteristic pSc119.2 hybridization sites. Employment of the PSR907 RFLP probe as a FISH marker allowed to resolve further the critical region in the various 3B recombinant lines. Three of them, like the control common wheat, exhibited between the two most distal pSc119.2 sites a single PSR907 FISH site, which was missing in a fourth recombinant line. The amount of alien chromatin can thus be estimated to represent around 20% of the recombinant arm in the three former lines and a maximum of 27% in the latter. A similar physical length was calculated for the alien segment contained in three 3D recombinants, all characterized by the presence of the Ae. longissima pSc119.2 sites distal to the nearly telomeric pAs1 sites of normal 3DS. Comparison between the FISH-based maps and previously developed RFLP maps of the 3BS-3SlS and 3DS-3SlS arms revealed substantial differences between physical and genetic map positions of the wheat-alien BPs and of molecular markers associated with the critical chromosomal portions.Key words: wheat-alien recombinants, chromosome engineering, fluorescence in situ hybridization, highly repeated and low-copy DNA probes, physical versus genetic maps.


Genome ◽  
1993 ◽  
Vol 36 (3) ◽  
pp. 489-494 ◽  
Author(s):  
Yasuhiko Mukai ◽  
Yumiko Nakahara ◽  
Maki Yamamoto

Common wheat, Triticum aestivum, is an allohexaploid species consisting of three different genomes (A, B, and D). The three genomes were simultaneously discriminated with different colors. Biotinylated total genomic DNA of the diploid A genome progenitor Triticum urartu, digoxigenin-labeled total genomic DNA of the diploid D genome progenitor Aegilops squarrosa, and nonlabeled total genomic DNA of one of the possible B genome progenitors Ae. speltoides were hybridized in situ to metaphase chromosome spreads of Triticum aestivum cv. Chinese Spring. For detection, only two fluorochromes, fluorescein and rhodamine, were used. The A, B, and D genomes were simultaneously detected by their yellow, brown, and orange fluorescence, respectively. The genomic fluorescence in situ hybridization pattern of chromosome 4A of cv. Chinese Spring wheat showed that the distal 32% of the long arm was derived from a B genome chromosome. Furthermore, by using two highly repeated sequence probes, pSc 119.2 and pAsl, and two fluorochromes simultaneously, we were able to identify all B and D genome chromosomes and chromosomes 1A, 4A, and 5A of wheat.Key words: common wheat, in situ hybridization, multicolor fluorescence.


Blood ◽  
2003 ◽  
Vol 101 (2) ◽  
pp. 706-710 ◽  
Author(s):  
Iwona Wlodarska ◽  
Peet Nooyen ◽  
Brigitte Maes ◽  
José I. Martı́n-Subero ◽  
Reiner Siebert ◽  
...  

We studied the genomic status of BCL6 in 23 cases of nodular lymphocyte predominance Hodgkin lymphoma (NLPHL) and 40 cases of classical Hodgkin lymphoma (cHL), using dual-color interphase fluorescence in situ hybridization (FISH). The BCL6rearrangement was identified in 48% of NLPHL cases and was not detected in cHL cases. As a confirmation, sequential or simultaneous immunohistochemistry (IHC) and FISH using CD20 or BCL6 antibodies and BCL6 DNA probes was performed in 8 NLPHL cases. The BCL6-associated translocations, t(3;22)(q27;q11), t(3;7)(q27;p12), and the most probable t(3;9)(q27;p13), were identified in 3 cases. A consistent expression of BCL6 protein in popcorn cells with the highest number of intensely stained cells in cases with a genomic BCL6rearrangement was shown by IHC. These findings support the hypothesis of a germinal center B cell–derived origin of NLPHL, indicate a significant role of BCL6 in the pathogenesis of NLPHL, and provide further evidence of the genetic diversity underlying the pathogenesis of NLPHL and cHL.


2006 ◽  
Vol 175 (4S) ◽  
pp. 287-288 ◽  
Author(s):  
Juliann M. Dziubinski ◽  
Michael F. Sarosdy ◽  
Paul R. Kahn ◽  
Mark D. Ziffer ◽  
William R. Love ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 156-156
Author(s):  
Chandler D. Dora ◽  
Yasushi Kondo ◽  
Fusheng X. Lan ◽  
Jeffrey M. Slezak ◽  
Erik J. Bergstralh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document