Daily and monthly averaged aerosol optical properties and diurnal variability deduced from AERONET sun-photometric measurements at Thala site (Tunisia)

2005 ◽  
Vol 92 (1-2) ◽  
pp. 103-114 ◽  
Author(s):  
M. Chaâbane ◽  
M. Masmoudi ◽  
K. Medhioub ◽  
F. Elleuch
2011 ◽  
Vol 33 (8) ◽  
pp. 2451-2461 ◽  
Author(s):  
Jian Chen ◽  
Hong Jiang ◽  
Bin Wang ◽  
Zhongyong Xiao ◽  
Zishan Jiang ◽  
...  

2010 ◽  
Vol 10 (2) ◽  
pp. 5627-5663 ◽  
Author(s):  
S. Marcq ◽  
P. Laj ◽  
J. C. Roger ◽  
P. Villani ◽  
K. Sellegri ◽  
...  

Abstract. Intense anthropogenic emissions over the Indian sub-continent lead to the formation of layers of particulate pollution that can be transported to the high altitude regions of the Himalaya-Hindu-Kush (HKH). Aerosol particles contain a substantial fraction of strongly absorbing material, including black carbon (BC), organic compounds (OC), and dust all of which can contribute to atmospheric warming, in addition to greenhouse gases. Using a 3-year record of continuous measurements of aerosol optical properties, we present a time series of key climate relevant aerosol properties including the aerosol absorption (σap) and scattering (σsp) coefficients as well as the single-scattering albedo (w). Results of this investigation show substantial seasonal variability of these properties, with long range transport during the pre- and post-monsoon seasons and efficient precipitation scavenging of aerosol particles during the monsoon season. The monthly averaged scattering coefficients range from 0.1 Mm−1 (monsoon) to 20 Mm−1 while the average absorption coefficients range from 0.5 Mm−1 to 3.5 Mm−1. Both have their maximum values during the pre-monsoon period (April) and reach a minimum during Monsoon (July–August). This leads to w values from 0.86 (pre-monsoon) to 0.79 (monsoon) seasons. Significant diurnal variability due to valley wind circulation is also reported. Using typical air mass trajectories encountered at the station, and aerosol optical depth (aod) measurements, we calculated the resulting direct local radiative forcing due to aerosols. We found that the presence of absorbing particulate material can locally induce an additional top of the atmosphere (TOA) forcing of 10 to 20 W m−2 for the first atmospheric layer (500 m above surface). The TOA positive forcing depends on the presence of snow at the surface, and takes place preferentially during episodes of regional pollution occurring on a very regular basis in the Himalayan valleys. Warming of the first atmospheric layer is paralleled by a substantial decrease of the amount of radiation reaching the surface. The surface forcing is estimated to range from −4 to −20 W m−2 for small-scale regional pollution events and large-scale pollution events, respectively. The calculated surface forcing is also very dependent on surface albedo, with maximum values occurring over a snow-covered surface. Overall, this work presents the first estimates of aerosol direct radiative forcing over the high Himalaya based on in-situ aerosol measurements, and results suggest a TOA forcing significantly greater than the IPCC reported values for green house gases.


2008 ◽  
Vol 42 (34) ◽  
pp. 7981-7987 ◽  
Author(s):  
Wupeng Du ◽  
Jinyuan Xin ◽  
Mingxing Wang ◽  
Qingxian Gao ◽  
Zhanqing Li ◽  
...  

2018 ◽  
Vol 18 (6) ◽  
pp. 4131-4152 ◽  
Author(s):  
James P. Sherman ◽  
Allison McComiskey

Abstract. Aerosol optical properties measured at Appalachian State University's co-located NASA AERONET and NOAA ESRL aerosol network monitoring sites over a nearly four-year period (June 2012–Feb 2016) are used, along with satellite-based surface reflectance measurements, to study the seasonal variability of diurnally averaged clear sky aerosol direct radiative effect (DRE) and radiative efficiency (RE) at the top-of-atmosphere (TOA) and at the surface. Aerosol chemistry and loading at the Appalachian State site are likely representative of the background southeast US (SE US), home to high summertime aerosol loading and one of only a few regions not to have warmed during the 20th century. This study is the first multi-year ground truth DRE study in the SE US, using aerosol network data products that are often used to validate satellite-based aerosol retrievals. The study is also the first in the SE US to quantify DRE uncertainties and sensitivities to aerosol optical properties and surface reflectance, including their seasonal dependence.Median DRE for the study period is −2.9 W m−2 at the TOA and −6.1 W m−2 at the surface. Monthly median and monthly mean DRE at the TOA (surface) are −1 to −2 W m−2 (−2 to −3 W m−2) during winter months and −5 to −6 W m−2 (−10 W m−2) during summer months. The DRE cycles follow the annual cycle of aerosol optical depth (AOD), which is 9 to 10 times larger in summer than in winter. Aerosol RE is anti-correlated with DRE, with winter values 1.5 to 2 times more negative than summer values. Due to the large seasonal dependence of aerosol DRE and RE, we quantify the sensitivity of DRE to aerosol optical properties and surface reflectance, using a calendar day representative of each season (21 December for winter; 21 March for spring, 21 June for summer, and 21 September for fall). We use these sensitivities along with measurement uncertainties of aerosol optical properties and surface reflectance to calculate DRE uncertainties. We also estimate uncertainty in calculated diurnally-averaged DRE due to diurnal aerosol variability. Aerosol DRE at both the TOA and surface is most sensitive to changes in AOD, followed by single-scattering albedo (ω0). One exception is under the high summertime aerosol loading conditions (AOD  ≥  0.15 at 550 nm), when sensitivity of TOA DRE to ω0 is comparable to that of AOD. Aerosol DRE is less sensitive to changes in scattering asymmetry parameter (g) and surface reflectance (R). While DRE sensitivity to AOD varies by only ∼ 25 to 30 % with season, DRE sensitivity to ω0, g, and R largely follow the annual AOD cycle at APP, varying by factors of 8 to 15 with season. Since the measurement uncertainties of AOD, ω0, g, and R are comparable at Appalachian State, their relative contributions to DRE uncertainty are largely influenced by their (seasonally dependent) DRE sensitivity values, which suggests that the seasonal dependence of DRE uncertainty must be accounted for. Clear sky aerosol DRE uncertainty at the TOA (surface) due to measurement uncertainties ranges from 0.45 (0.75 W m−2) for December to 1.1 (1.6 W m−2) for June. Expressed as a fraction of DRE computed using monthly median aerosol optical properties and surface reflectance, the DRE uncertainties at TOA (surface) are 20 to 24 % (15 to 22 %) for March, June, and September and 49 (50 %) for DEC. The relatively low DRE uncertainties are largely due to the low uncertainty in AOD measured by AERONET. Use of satellite-based AOD measurements by MODIS in the DRE calculations increases DRE uncertainties by a factor of 2 to 5 and DRE uncertainties are dominated by AOD uncertainty for all seasons. Diurnal variability in AOD (and to a lesser extent g) contributes to uncertainties in DRE calculated using daily-averaged aerosol optical properties that are slightly larger (by ∼ 20 to 30 %) than DRE uncertainties due to measurement uncertainties during summer and fall, with comparable uncertainties during winter and spring.


2014 ◽  
Vol 14 (20) ◽  
pp. 27731-27767 ◽  
Author(s):  
M. Hervo ◽  
K. Sellegri ◽  
J. M. Pichon ◽  
J. C. Roger ◽  
P. Laj

Abstract. Optical properties of aerosols were measured from the GAW Puy de Dôme station (1465 m) over a seven year period (2006–2012). The impact of hygroscopicity on aerosol optical properties was calculated over a two year period (2010–2011). The analysis of the spatial and temporal variability of the optical properties showed that while no long term trend was found, a clear seasonal and diurnal variation was observed on the extensive parameters (scattering, absorption). Scattering and absorption coefficients were highest during the warm season and daytime, in concordance with the seasonality and diurnal variation of the PBL height reaching the site. Intensive parameters (single scattering albedo, asymmetry factor, refractive index) did not show such a strong diurnal variability, but still indicated different values depending on the season. Both extensive and intensive optical parameters were sensitive to the air mass origin. A strong impact of hygroscopicity on aerosol optical properties was calculated, mainly on aerosol scattering, with a dependence on the aerosol type. At 90% humidity, the scattering factor enhancement (fσsca) was more than 4.4 for oceanic aerosol that have mixed with a pollution plume. Consequently, the aerosol radiative forcing was estimated to be 2.8 times higher at RH = 90% and 1.75 times higher at ambient RH when hygroscopic growth of the aerosol was considered. The hygroscopicity enhancement factor of the scattering coefficient was parameterized as a function of humidity and air mass type.


2015 ◽  
Vol 15 (21) ◽  
pp. 12487-12517 ◽  
Author(s):  
J. P. Sherman ◽  
P. J. Sheridan ◽  
J. A. Ogren ◽  
E. Andrews ◽  
D. Hageman ◽  
...  

Abstract. Hourly averaged aerosol optical properties (AOPs) measured over the years 2010–2013 at four continental North American NOAA Earth System Research Laboratory (NOAA/ESRL) cooperative aerosol network sites – Southern Great Plains near Lamont, OK (SGP), Bondville, IL (BND), Appalachian State University in Boone, NC (APP), and Egbert, Ontario, Canada (EGB) are analyzed. Aerosol optical properties measured over 1996–2009 at BND and 1997–2009 at SGP are also presented. The aerosol sources and types in the four regions differ enough so as to collectively represent rural, anthropogenically perturbed air conditions over much of eastern continental North America. Temporal AOP variability on monthly, weekly, and diurnal timescales is presented for each site. Differences in annually averaged AOPs and those for individual months at the four sites are used to examine regional AOP variability. Temporal and regional variability are placed in the context of reported aerosol chemistry at the sites, meteorological measurements (wind direction, temperature), and reported regional mixing layer heights. Basic trend analysis is conducted for selected AOPs at the long-term sites (BND and SGP). Systematic relationships among AOPs are also presented. Seasonal variability in PM1 (sub-1 μm particulate matter) scattering and absorption coefficients at 550 nm (σsp and σap, respectively) and most of the other PM1 AOPs is much larger than day of week and diurnal variability at all sites. All sites demonstrate summer σsp and σap peaks. Scattering coefficient decreases by a factor of 2–4 in September–October and coincides with minimum single-scattering albedo (ω0) and maximum hemispheric backscatter fraction (b). The co-variation of ω0 and b lead to insignificant annual cycles in top-of-atmosphere direct radiative forcing efficiency (DRFE) at APP and SGP. Much larger annual DRFE cycle amplitudes are observed at EGB (~ 40 %) and BND (~ 25 %), with least negative DRFE in September–October at both sites. Secondary winter peaks in σsp are observed at all sites except APP. Amplitudes of diurnal and weekly cycles in σap at the sites are larger for all seasons than those of σsp, with the largest differences occurring in summer. The weekly and diurnal cycle amplitudes of most intensive AOPs (e.g., those derived from ratios of measured σsp and σap) are minimal in most cases, especially those related to parameterizations of aerosol size distribution. Statistically significant trends in σsp (decreasing), PM1 scattering fraction (decreasing), and b (increasing) are found at BND from 1996 to 2013 and at SGP from 1997 to 2013. A statistically significant decreasing trend in PM10 scattering Ångström exponent is also observed for SGP but not BND. Most systematic relationships among AOPs are similar for the four sites and are adequately described for individual seasons by annually averaged relationships, although relationships involving absorption Ångström exponent vary with site and season.


2010 ◽  
Vol 10 (13) ◽  
pp. 5859-5872 ◽  
Author(s):  
S. Marcq ◽  
P. Laj ◽  
J. C. Roger ◽  
P. Villani ◽  
K. Sellegri ◽  
...  

Abstract. Intense anthropogenic emissions over the Indian sub-continent lead to the formation of layers of particulate pollution that can be transported to the high altitude regions of the Himalaya-Hindu-Kush (HKH). Aerosol particles contain a substantial fraction of strongly absorbing material, including black carbon (BC), organic compounds (OC), and dust all of which can contribute to atmospheric warming, in addition to greenhouse gases. Using a 3-year record of continuous measurements of aerosol optical properties, we present a time series of key climate relevant aerosol properties including the aerosol absorption (σap) and scattering (σsp) coefficients as well as the single-scattering albedo (w0). Results of this investigation show substantial seasonal variability of these properties, with long range transport during the pre- and post-monsoon seasons and efficient precipitation scavenging of aerosol particles during the monsoon season. The monthly averaged scattering coefficients range from 0.1 Mm−1 (monsoon) to 20 Mm−1 while the average absorption coefficients range from 0.5 Mm−1 to 3.5 Mm−1. Both have their maximum values during the pre-monsoon period (April) and reach a minimum during Monsoon (July–August). This leads to dry w0 values from 0.86 (pre-monsoon) to 0.79 (monsoon) seasons. Significant diurnal variability due to valley wind circulation is also reported. Using aerosol optical depth (AOD) measurements, we calculated the resulting direct local radiative forcing due to aerosols for selected air mass cases. We found that the presence of absorbing particulate material can locally induce an additional top of the atmosphere (TOA) forcing of 10 to 20 W m−2 for the first atmospheric layer (500 m above surface). The TOA positive forcing depends on the presence of snow at the surface, and takes place preferentially during episodes of regional pollution occurring on a very regular basis in the Himalayan valleys. Warming of the first atmospheric layer is paralleled by a substantial decrease of the amount of radiation reaching the surface. The surface forcing is estimated to range from −4 to −20 W m−2 for small-scale regional pollution events and large-scale pollution events, respectively. The calculated surface forcing is also very dependent on surface albedo, with maximum values occurring over a snow-covered surface. Overall, this work presents the first estimates of aerosol direct radiative forcing over the high Himalaya based on in-situ aerosol measurements, and results suggest a TOA forcing significantly greater than the IPCC reported values for green house gases.


2021 ◽  
pp. 118301
Author(s):  
Yongjoo Choi ◽  
Young Sung Ghim ◽  
Michal Segal Rozenhaimer ◽  
Jens Redemann ◽  
Samuel E. LeBlanc ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document