scholarly journals Hydroclimatic change disparity of Peruvian Pacific drainage catchments

2017 ◽  
Vol 134 (1-2) ◽  
pp. 139-153 ◽  
Author(s):  
Pedro Rau ◽  
Luc Bourrel ◽  
David Labat ◽  
Frédéric Frappart ◽  
Denis Ruelland ◽  
...  
Keyword(s):  
Wetlands ◽  
2018 ◽  
Vol 38 (4) ◽  
pp. 755-767 ◽  
Author(s):  
Fernando Jaramillo ◽  
Lucía Licero ◽  
Imenne Åhlen ◽  
Stefano Manzoni ◽  
Jenny Alexandra Rodríguez-Rodríguez ◽  
...  
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Z. T. Larkin ◽  
T. J. Ralph ◽  
S. Tooth ◽  
K. A. Fryirs ◽  
A. J. R. Carthey

Author(s):  
Yan Ma ◽  
Guillaume Vigouroux ◽  
Zahra Kalantari ◽  
Romain Goldenberg ◽  
Georgia Destouni

Hydroclimatic change may affect the range of some infectious diseases, including tularemia. Previous studies have investigated associations between tularemia incidence and climate variables, with some also establishing quantitative statistical disease models based on historical data, but studies considering future climate projections are scarce. This study has used and combined hydro-climatic projection outputs from multiple global climate models (GCMs) in phase six of the Coupled Model Intercomparison Project (CMIP6), and site-specific, parameterized statistical tularemia models, which all imply some type of power-law scaling with preceding-year tularemia cases, to assess possible future trends in disease outbreaks for six counties across Sweden, known to include tularemia high-risk areas. Three radiative forcing (emissions) scenarios are considered for climate change projection until year 2100, incuding low (2.6 Wm−2), medium (4.5 Wm−2), and high (8.5 Wm−2) forcing. The results show highly divergent changes in future disease outbreaks among Swedish counties, depending primarily on site-specific type of the best-fit disease power-law scaling characteristics of (mostly positive, in one case negative) sub- or super-linearity. Results also show that scenarios of steeper future climate warming do not necessarily lead to steeper increase of future disease outbreaks. Along a latitudinal gradient, the likely most realistic medium climate forcing scenario indicates future disease decreases (intermittent or overall) for the relatively southern Swedish counties Örebro and Gävleborg (Ockelbo), respectively, and disease increases of considerable or high degree for the intermediate (Dalarna, Gävleborg (Ljusdal)) and more northern (Jämtland, Norrbotten; along with the more southern Värmland exception) counties, respectively.


2013 ◽  
Vol 118 (19) ◽  
pp. 10,676-10,693 ◽  
Author(s):  
Moetasim Ashfaq ◽  
Subimal Ghosh ◽  
Shih-Chieh Kao ◽  
Laura C. Bowling ◽  
Philip Mote ◽  
...  

2017 ◽  
Vol 114 (13) ◽  
pp. 3340-3345 ◽  
Author(s):  
Zhongfang Liu ◽  
Yanlin Tang ◽  
Zhimin Jian ◽  
Christopher J. Poulsen ◽  
Jeffrey M. Welker ◽  
...  

Land and sea surface temperatures, precipitation, and storm tracks in North America and the North Pacific are controlled to a large degree by atmospheric variability associated with the Pacific North American (PNA) pattern. The modern instrumental record indicates a trend toward a positive PNA phase in recent decades, which has led to accelerated warming and snowpack decline in northwestern North America. The brevity of the instrumental record, however, limits our understanding of long-term PNA variability and its directional or cyclic patterns. Here we develop a 937-y-long reconstruction of the winter PNA based on a network of annually resolved tree-ring proxy records across North America. The reconstruction is consistent with previous regional records in suggesting that the recent persistent positive PNA pattern is unprecedented over the past millennium, but documents patterns of decadal-scale variability that contrast with previous reconstructions. Our reconstruction shows that PNA has been strongly and consistently correlated with sea surface temperature variation, solar irradiance, and volcanic forcing over the period of record, and played a significant role in translating these forcings into decadal-to-multidecadal hydroclimate variability over North America. Climate model ensembles show limited power to predict multidecadal variation in PNA over the period of our record, raising questions about their potential to project future hydroclimatic change modulated by this circulation pattern.


2015 ◽  
Vol 358 ◽  
pp. 35-41 ◽  
Author(s):  
Feng Chen ◽  
Yu-jiang Yuan ◽  
Wen-shou Wei ◽  
Shu-long Yu ◽  
Tong-wen Zhang ◽  
...  

2009 ◽  
Vol 6 (5) ◽  
pp. 6181-6206 ◽  
Author(s):  
A. S. Kiem ◽  
D. C. Verdon-Kidd

Abstract. Since the mid-1990s Victoria, located in southeast Australia, has experienced severe drought conditions characterized by streamflow that is the lowest on record in many areas. While severe decreases in annual and seasonal rainfall totals have also been observed, this alone does not seem to explain the observed reduction in flow. In this study, we investigate the large-scale climate drivers for Victoria and demonstrate how these modulate the regional scale synoptic patterns, which in turn alter the way seasonal rainfall totals are compiled and the amount of runoff per unit rainfall that is produced. The hydrological implications are significant and illustrate the need for robust hydrological modelling, which takes into account insights into physical mechanisms that drive regional hydroclimatology, in order to properly understand and quantify the impacts of climate change (natural and/or anthropogenic) on water resources.


Sign in / Sign up

Export Citation Format

Share Document