Modification of hepatitis C virus 1b RNA polymerase to make a highly active JFH1-type polymerase by mutation of the thumb domain

2009 ◽  
Vol 154 (5) ◽  
pp. 765-773 ◽  
Author(s):  
Leiyun Weng ◽  
Jiamu Du ◽  
Jingling Zhou ◽  
Jianping Ding ◽  
Takaji Wakita ◽  
...  
2004 ◽  
Vol 116 (33) ◽  
pp. 4406-4411 ◽  
Author(s):  
Steven R. LaPlante ◽  
Araz Jakalian ◽  
Norman Aubry ◽  
Yves Bousquet ◽  
Jean-Marie Ferland ◽  
...  

2010 ◽  
Vol 84 (11) ◽  
pp. 5824-5835 ◽  
Author(s):  
Takahiro Masaki ◽  
Ryosuke Suzuki ◽  
Mohsan Saeed ◽  
Ken-ichi Mori ◽  
Mami Matsuda ◽  
...  

ABSTRACT In this study, we used an RNA polymerase I (Pol I) transcription system for development of a reverse genetics protocol to produce hepatitis C virus (HCV), which is an uncapped positive-strand RNA virus. Transfection with a plasmid harboring HCV JFH-1 full-length cDNA flanked by a Pol I promoter and Pol I terminator yielded an unspliced RNA with no additional sequences at either end, resulting in efficient RNA replication within the cytoplasm and subsequent production of infectious virions. Using this technology, we developed a simple replicon trans-packaging system, in which transient transfection of two plasmids enables examination of viral genome replication and virion assembly as two separate steps. In addition, we established a stable cell line that constitutively produces HCV with a low mutation frequency of the viral genome. The effects of inhibitors of N-linked glycosylation on HCV production were evaluated using this cell line, and the results suggest that certain step(s), such as virion assembly, intracellular trafficking, and secretion, are potentially up- and downregulated according to modifications of HCV envelope protein glycans. This Pol I-based HCV expression system will be beneficial for a high-throughput antiviral screening and vaccine discovery programs.


2013 ◽  
Vol 06 (01) ◽  
pp. 1250062
Author(s):  
YONG-HONG HU ◽  
BAO-HUA ZHANG

In this paper, we take naturally occurring 2-benzylidenebenzofuran-3-ones (aurones) inhibitors of hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) as an example to study the Multi-dimensional scaling (MDS) method for structure-activity relationship. By analyzing training set molecules, our MDS method combined with a PROXSCAL algorithm can predict inhibitory activity of most compounds correctly. Thus, a new sample's activity can be estimated and judged conveniently, and whether it should be synthesized can be known. The MDS method is applicable to optimize the structure for a compound and to provide suggestions for drug design.


2000 ◽  
Vol 74 (2) ◽  
pp. 851-863 ◽  
Author(s):  
Guangxiang Luo ◽  
Robert K. Hamatake ◽  
Danielle M. Mathis ◽  
Jason Racela ◽  
Karen L. Rigat ◽  
...  

ABSTRACT Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn2+ than in the presence of Mg2+. When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a “copy-back” mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3′ end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (≥50 μM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo.


Sign in / Sign up

Export Citation Format

Share Document