rna polymerase activity
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 29)

H-INDEX

44
(FIVE YEARS 4)

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Saba Rezaei-Lotfi ◽  
Filip Vujovic ◽  
Mary Simonian ◽  
Neil Hunter ◽  
Ramin M. Farahani

Abstract Background Transdifferentiation describes transformation in vivo of specialized cells from one lineage into another. While there is extensive literature on forced induction of lineage reprogramming in vitro, endogenous mechanisms that govern transdifferentiation remain largely unknown. The observation that human microvascular pericytes transdifferentiate into neurons provided an opportunity to explore the endogenous molecular basis for lineage reprogramming. Results We show that abrupt destabilization of the higher-order chromatin topology that chaperones lineage memory of pericytes is driven by transient global transcriptional arrest. This leads within minutes to localized decompression of the repressed competing higher-order chromatin topology and expression of pro-neural genes. Transition to neural lineage is completed by probabilistic induction of R-loops in key myogenic loci upon re-initiation of RNA polymerase activity, leading to depletion of the myogenic transcriptome and emergence of the neurogenic transcriptome. Conclusions These findings suggest that the global transcriptional landscape not only shapes the functional cellular identity of pericytes, but also stabilizes lineage memory by silencing the competing neural program within a repressed chromatin state.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tomas Kouba ◽  
Dominik Vogel ◽  
Sigurdur R. Thorkelsson ◽  
Emmanuelle R. J. Quemin ◽  
Harry M. Williams ◽  
...  

AbstractLassa virus is endemic in West Africa and can cause severe hemorrhagic fever. The viral L protein transcribes and replicates the RNA genome via its RNA-dependent RNA polymerase activity. Here, we present nine cryo-EM structures of the L protein in the apo-, promoter-bound pre-initiation and active RNA synthesis states. We characterize distinct binding pockets for the conserved 3’ and 5’ promoter RNAs and show how full-promoter binding induces a distinct pre-initiation conformation. In the apo- and early elongation states, the endonuclease is inhibited by two distinct L protein peptides, whereas in the pre-initiation state it is uninhibited. In the early elongation state, a template-product duplex is bound in the active site cavity together with an incoming non-hydrolysable nucleotide and the full C-terminal region of the L protein, including the putative cap-binding domain, is well-ordered. These data advance our mechanistic understanding of how this flexible and multifunctional molecular machine is activated.


2021 ◽  
Author(s):  
Maofeng Wang ◽  
Cancan Wu ◽  
Nan Liu ◽  
Fengyu Zhang ◽  
Hongjie Dong ◽  
...  

The coronavirus disease 2019 (COVID-19) has been ravaging throughout the world for almost two years and has severely impaired both human health and the economy. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) employs the viral RNA-dependent RNA polymerase (RdRp) complex for genome replication and transcription, making RdRp an appealing target for antiviral drug development. Although the structure of the RdRp complex has been determined, the function of RdRp has not been fully characterized. Here we reveal that in addition to RNA dependent RNA polymerase activity, RdRp also shows exoribonuclease activity and consequently proofreading activity. We observed that RdRp and nsp14-ExoN, when combined, exhibit higher proofreading activity compared to RdRp alone. Moreover, RdRp can recognize and utilize nucleoside diphosphate (NDP) as substrate to synthesize RNA and can also incorporate β-d-N4-hydroxycytidine (NHC) into RNA while using diphosphate form molnupiravir as substrate.


RNA ◽  
2021 ◽  
pp. rna.078949.121
Author(s):  
Sai Wang ◽  
Kitt Wing Ki Chan ◽  
Min Jie Alvin Tan ◽  
Charlotte Flory ◽  
Dahai Luo ◽  
...  

Replication of the RNA genome of flaviviruses without a primer involves RNA-protein interactions that have been shown to include the recognition of the stem-loop A (SLA) in the 5’ untranslated region (UTR) by the non-structural protein 5 (NS5). We show that DENV2 NS5 arginine 888, located within the C-terminal 18 residues, is completely conserved in all flaviviruses and interacts specifically with the top-loop of 3’SL in the 3’UTR which contains the pentanucleotide 5’-CACAG-3’ previously shown to be critical for flavivirus RNA replication. We present virological and biochemical data showing the importance of this Arg 888 in virus viability and de novo initiation of RNA polymerase activity in vitro. Based on our binding studies, we hypothesize that ternary complex formation of NS5 with 3’SL, followed by dimerization, leads to the formation of the de novo initiation complex that could be regulated by the reversible zipping and unzipping of cis-acting RNA elements.


2021 ◽  
Author(s):  
Takehiro Kanda ◽  
Masayuki Horie ◽  
Yumiko Komatsu ◽  
Keizo Tomonaga

An RNA virus-based episomal vector (REVec) based on Borna disease virus 1 (BoDV-1) is a promising viral vector that achieves stable and long-term gene expression in transduced cells. However, the onerous procedure of reverse genetics used to generate a REVec is one of the challenges that must be overcome to make REVec technologies practical for use. In this study, to resolve the problems posed by reverse genetics, we focused on BoDV-2, a conspecific virus of BoDV-1 in the Mammalian 1 orthobornavirus . We synthesized the BoDV-2 nucleoprotein (N) and phosphoprotein (P) according to the reference sequences and evaluated their effects on the RNA polymerase activity of the BoDV-1 large protein (L) and viral replication. In the minireplicon assay, we found that BoDV-2 N significantly enhanced BoDV-1 polymerase activity and that BoDV-2 P supported further enhancement of this activity by N. A single amino acid substitution assay identified serine at position 30 of BoDV-2 N and alanine at position 24 of BoDV-2 P as critical amino acid residues for the enhancement of BoDV-1 polymerase activity. In reverse genetics, on the other hand, BoDV-2 N alone was sufficient to increase the rescue efficiency of the REVec. We showed that the REVec can be rescued directly from transfected 293T cells by using BoDV-2 N as a helper plasmid without cocultivation with Vero cells and following several weeks of passage. In addition, a chimeric REVec harboring the BoDV-2 N produced much higher levels of transgene mRNA and genomic RNA than the wild-type REVec in transduced cells. Our results contribute to not only improvements to the REVec system but also understanding of the molecular regulation of orthobornavirus polymerase activity. Importance Borna disease virus 1 (BoDV-1), a prototype virus of the species Mammalian 1 orthobornavirus , is a nonsegmented negative-strand RNA virus that persists in the host nucleus. The nucleoprotein (N) of BoDV-1 encapsidates genomic and antigenomic viral RNA, playing important roles in viral transcription and replication. In this study, we demonstrated that the N of BoDV-2, another genotype in the species Mammalian 1 orthobornavirus , can participate in the viral ribonucleoprotein complex of BoDV-1 and enhance the activity of BoDV-1 polymerase (L) in both the BoDV-1 minireplicon assay and reverse genetics system. Chimeric recombinant BoDV-1 expressing BoDV-2 N but not BoDV-1 N showed higher transcription and replication levels, whereas the propagation and infectious particle production of the chimeric virus were comparable to those of wild-type BoDV-1, suggesting that the level of viral replication in the nucleus is not directly involved in the progeny virion production of BoDVs. Our results demonstrate a molecular mechanism of bornaviral polymerase activity, which will contribute to further development of vector systems using orthobornaviruses.


2021 ◽  
pp. molcanther.MCT-20-0489-A.2020
Author(s):  
Daniel A. R. Heisey ◽  
Sheeba Jacob ◽  
Timonthy L Lochmann ◽  
Richard Kurupi ◽  
Maninderjit S. Ghotra ◽  
...  

2021 ◽  
Author(s):  
Luke A Wojenski ◽  
Lauren M Wainman ◽  
Geno J Villafano ◽  
Chris Kuhlberg ◽  
Pariksheet Nanda ◽  
...  

Following cell division, genomes must reactivate gene expression patterns that reflect the identity of the cell. Here, we use PRO-seq to examine the mechanisms that reestablish transcription patterns after mitosis. We uncover regulation of the transcription cycle at multiple steps including initiation, promoter-proximal pause positioning and escape, poly-A site cleavage and termination during the mitotic-G1 transition. During mitosis, RNA polymerase activity is retained at initiation sites, albeit shifted in position relative to non-mitotic cells. This activity is strongly linked to maintenance of local chromatin architecture during mitosis and is more predictive of rapid gene reactivation than histone modifications previously associated with bookmarking. These molecular bookmarks, combined with sequence-specific transcription factors, direct expression of select cell growth and cell specific genes during mitosis followed by reactivation of functional gene groups with distinct kinetics after mitosis. This study details how dynamic regulation of transcription at multiple steps contributes to gene expression during the cell cycle.


Author(s):  
Yanira Sáez-Álvarez ◽  
Nereida Jiménez de Oya ◽  
Carmen del Águila ◽  
Juan-Carlos Saiz ◽  
Armando Arias ◽  
...  

Zika virus (ZIKV) is a mosquito-borne pathogen responsible for neurological disorders (Guillain-Barré syndrome) and congenital malformations (microcephaly). Its ability to cause explosive epidemics, such as that of 2015-16, urges the identification for effective antiviral drugs. Viral polymerase inhibitors constitute one of the most successful fields in antiviral research. Accordingly, the RNA-dependent RNA polymerase activity of flavivirus NS5 protein provides a unique target for the development of direct antivirals with high specificity and low toxicity. Here we describe the discovery and characterization of two novel non-nucleoside inhibitors of ZIKV polymerase. These inhibitors, TCMDC-143406 ( 6 ) and TCMDC-143215 ( 15 ), were identified through the screening of an open resource library of anti-kinetoplastid compounds using a fluorescence-based polymerization assay based on ZIKV NS5. The two compounds inhibited ZIKV NS5 polymerase activity in vitro and ZIKV multiplication in cell culture (EC 50 values of 0.5 and 2.6 μM for 6 and 15 , respectively). Both compounds also inhibited the replication of other pathogenic flaviviruses, namely West Nile virus (WNV; EC 50 values of 4.3 and 4.6 μM for 6 and 15 , respectively) and dengue virus 2 (DENV-2; EC 50 values of 3.4 and 9.6 μM for 6 and 15 , respectively). Enzymatic assays confirmed that the polymerase inhibition was produced by a non-competitive mechanism. Combinatorial assays revealed an antagonistic effect between both compounds, suggesting that they would bind to the same region of ZIKV polymerase. The non-nucleoside inhibitors of ZIKV polymerase here described could constitute promising lead compounds for the development of anti-ZIKV therapies and eventually broad-spectrum anti-flavivirus drugs.


Sign in / Sign up

Export Citation Format

Share Document