thumb domain
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

2020 ◽  
Vol 117 (35) ◽  
pp. 21274-21280
Author(s):  
Woo Suk Choi ◽  
Peng He ◽  
Arti Pothukuchy ◽  
Jimmy Gollihar ◽  
Andrew D. Ellington ◽  
...  

We report here crystal structures of a reverse transcriptase RTX, which was evolved in vitro from the B family polymerase KOD, in complex with either a DNA duplex or an RNA–DNA hybrid. Compared with the apo, binary, and ternary complex structures of the original KOD polymerase, the 16 substitutions that result in the function of copying RNA to DNA do not change the overall protein structure. Only six substitutions occur at the substrate-binding surface, and the others change domain–domain interfaces in the polymerase to enable RNA–DNA hybrid binding and reverse transcription. Most notably, F587L at the Palm and Thumb interface stabilizes the open and apo conformation of the Thumb. The intrinsically flexible Thumb domain seems to play a major role in accommodating the RNA–DNA hybrid product distal to the active site. This is reminiscent of naturally occurring RNA-dependent DNA polymerases, including telomerase, which have a dramatically augmented Thumb domain, and of reverse transcriptase, which extends its Thumb with the RNase H domain.


2020 ◽  
Author(s):  
Claudia Lancey ◽  
Muhammad Tehseen ◽  
Masateru Takahashi ◽  
Mohamed A. Sobhy ◽  
Timothy J. Ragan ◽  
...  

Replacement of the stalled replicative polymerase (Pol δ) at a DNA lesion by the error-prone DNA polymerase κ (Pol κ) restarts synthesis past the lesion to prevent genome instability. The switching from Pol δ to Pol κ is mediated by the processivity clamp PCNA but the structural basis of this mechanism is unknown. We determined the Cryo-EM structures of human Pol κ–DNA–PCNA complex and of a stalled Pol δ–DNA–PCNA complex at 3.9 and 4.7 Å resolution, respectively. In Pol κ complex, the C-terminus of the PAD domain docks the catalytic core to one PCNA protomer in an angled orientation, bending the DNA exiting Pol κ active site through PCNA. In Pol δ complex, the DNA is disengaged from the active site but is retained by the thumb domain. We present a model for polymerase switching facilitated by Pol κ recruitment to PCNA and Pol κ conformational sampling to seize the DNA from stalled Pol δ assisted by PCNA tilting.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. e00316-18 ◽  
Author(s):  
Daniel J. Rawle ◽  
Dongsheng Li ◽  
Joakim E. Swedberg ◽  
Lu Wang ◽  
Dinesh C. Soares ◽  
...  

ABSTRACTOnce HIV-1 enters a cell, the viral core is uncoated by a poorly understood mechanism and the HIV-1 genomic RNA is reverse transcribed into DNA. Host cell factors are essential for these processes, although very few reverse transcription complex binding host cell factors have been convincingly shown to affect uncoating or reverse transcription. We previously reported that cellular eukaryotic translation elongation factor 1A (eEF1A) interacts tightly and directly with HIV-1 reverse transcriptase (RT) for more efficient reverse transcription. Here we report that the surface-exposed acidic residues in the HIV-1 RT thumb domain alpha-J helix and flanking regions are important for interaction with eEF1A. Mutation of surface-exposed acidic thumb domain residues D250, E297, E298, and E300 to arginine resulted in various levels of impairment of the interaction between RT and eEF1A. This indicates that this negatively charged region in the RT thumb domain is important for interaction with the positively charged eEF1A protein. The impairment of RT and eEF1A interaction by the RT mutations correlated with the efficiency of reverse transcription, uncoating, and infectivity. The best example of this is the strictly conserved E300 residue, where mutation significantly impaired the interaction of RT with eEF1A and virus replication in CD4+T cells without affectingin vitroRT catalytic activity, RT heterodimerization, or RNase H activity. This study demonstrated that the interaction between surface-exposed acidic residues of the RT thumb domain and eEF1A is important for HIV-1 uncoating, reverse transcription, and replication.IMPORTANCEHIV-1, like all viruses, requires host cell proteins for its replication. Understanding the mechanisms behind virus-host interactions can lay the foundation for future novel therapeutic developments. Our lab has identified eEF1A as a key HIV-1 RT binding host protein that is important for the reverse transcription of HIV-1 genomic RNA into DNA. Here we identify the first surface-exposed RT residues that underpin interactions with eEF1A. Mutation of one strictly conserved RT residue (E300R) delayed reverse transcription and viral core uncoating and strongly inhibited HIV-1 replication in CD4+T cells. This study advances the structural and mechanistic detail of the key RT-eEF1A interaction in HIV-1 infection and indicates its importance in uncoating for the first time. This provides a further basis for the development of an RT-eEF1A interaction-inhibiting anti-HIV-1 drug and suggests that the surface-exposed acidic patch of the RT thumb domain may be an attractive drug target.


2017 ◽  
Vol 36 (6) ◽  
pp. 453-460 ◽  
Author(s):  
Angela Gala Morena Gatius ◽  
Fabrizio Dal Piaz ◽  
Alejandro Hochkoeppler

2017 ◽  
Vol 83 (18) ◽  
Author(s):  
Li Wang ◽  
Chenchen Liang ◽  
Jing Wu ◽  
Liming Liu ◽  
Keith E. J. Tyo

ABSTRACT The present study aimed to increase the processivity of Sulfolobus solfataricus DNA polymerase Dpo4. Protein engineering and bioinformatics were used to compile a library of potential Dpo4 mutation sites. Ten potential mutants were identified and constructed. A primer extension assay was used to evaluate the processivity of Dpo4 mutants. Thumb (A181D) and finger (E63K) domain mutants showed a processivity of 20 and 19 nucleotides (nt), respectively. A little finger domain mutant (I248Y) exhibited a processivity of 17 nt, only 1 nt more than wild-type Dpo4. Furthermore, the A181D mutant showed lower fidelity and higher nucleotide incorporation efficiency (4.74 × 10−4 s−1 μM−1) than E63K and I248Y mutants. When tasked with bypassing damage, the A181D mutant exhibited a 3.81-fold and 2.62-fold higher catalytic efficiency (k cat/Km ) at incorporating dCTP and dATP, respectively, than wild-type Dpo4. It also showed a 55% and 91.5% higher catalytic efficiency when moving beyond the damaged 8-oxoG:C and 8-oxoG:A base pairs, respectively, compared to wild-type Dpo4. Protein engineering and bioinformatics methods can effectively increase the processivity and translesion synthesis ability of Dpo4. IMPORTANCE DNA polymerases with poor fidelity can be exploited to store data and record changes in response to the intracellular environment. Sulfolobus solfataricus Dpo4 is such an enzyme, although its use is hindered by its low processivity. In this work, we used a bioinformatics and protein engineering approach to generate Dpo4 mutants with improved processivity. We identified the Dpo4 thumb domain as the most relevant in controlling processivity.


2016 ◽  
Vol 26 (18) ◽  
pp. 4536-4541 ◽  
Author(s):  
Claire Pierra Rouvière ◽  
Agnès Amador ◽  
Eric Badaroux ◽  
Thierry Convard ◽  
Daniel Da Costa ◽  
...  

2016 ◽  
Vol 291 (21) ◽  
pp. 11407-11419 ◽  
Author(s):  
Aram J. Krauson ◽  
Marcelo D. Carattino
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document