Three-dimensional structure of foot-and-mouth disease virus and its biological functions

2014 ◽  
Vol 160 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Shi-Chong Han ◽  
Hui-Chen Guo ◽  
Shi-Qi Sun
Nature ◽  
1989 ◽  
Vol 337 (6209) ◽  
pp. 709-716 ◽  
Author(s):  
Ravindra Acharya ◽  
Elizabeth Fry ◽  
David Stuart ◽  
Graham Fox ◽  
David Rowlands ◽  
...  

2006 ◽  
Vol 81 (4) ◽  
pp. 2012-2024 ◽  
Author(s):  
Macarena Sierra ◽  
Antero Airaksinen ◽  
Claudia González-López ◽  
Rubén Agudo ◽  
Armando Arias ◽  
...  

ABSTRACT The nucleoside analogue ribavirin (R) is mutagenic for foot-and-mouth disease virus (FMDV). Passage of FMDV in the presence of increasing concentrations of R resulted in the selection of FMDV with the amino acid substitution M296I in the viral polymerase (3D). Measurements of progeny production and viral fitness with chimeric viruses in the presence and absence of R documented that the 3D substitution M296I conferred on FMDV a selective replicative advantage in the presence of R but not in the absence of R. In polymerization assays, a purified mutant polymerase with I296 showed a decreased capacity to use ribavirin triphosphate as a substrate in the place of GTP and ATP, compared with the wild-type enzyme. The results suggest that M296I has been selected because it attenuates the mutagenic activity of R with FMDV. Replacement M296I is located within a highly conserved stretch in picornaviral polymerases which includes residues that interact with the template-primer complex and probably also with the incoming nucleotide, according to the three-dimensional structure of FMDV 3D. Given that a 3D substitution, distant from M296I, was associated with resistance to R in poliovirus, the results indicate that picornaviral polymerases include different domains that can alter the interaction of the enzyme with mutagenic nucleoside analogues. Implications for lethal mutagenesis are discussed.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Tatsuya Nishi ◽  
Kazuki Morioka ◽  
Nobuko Saito ◽  
Makoto Yamakawa ◽  
Toru Kanno ◽  
...  

ABSTRACT Individual foot-and-mouth disease virus (FMDV) strains reveal different degrees of infectivity and pathogenicity in host animals. The differences in severity among outbreaks might be ascribable to these differences in infectivity among FMDV strains. To investigate the molecular mechanisms underlying these differences, we estimated the infectivity of O/JPN/2000 and O/JPN/2010, which caused outbreaks of markedly different scales, in cell lines, Holstein cattle, and suckling mice. Viral growth of the two strains in cells was not remarkably different; however, O/JPN/2000 showed apparently low transmissibility in cattle. Mortality rates of suckling mice inoculated intraperitoneally with a 50% tissue culture infective dose (TCID50) of 10 for O/JPN/2000 and O/JPN/2010 also differed, at 0% and 100%, respectively. To identify genes responsible for this difference in infectivity, genetic regions of the full-length cDNA of O/JPN/2010 were replaced with corresponding fragments of O/JPN/2000. A total of eight recombinant viruses were successfully recovered, and suckling mice were intraperitoneally inoculated. Strikingly, recombinants having either VP1 or 3D derived from O/JPN/2000 showed 0% mortality in suckling mice, whereas other recombinants showed 100% mortality. This finding indicates that VP1, the outermost component of the virus particle, and 3D, an RNA-dependent RNA polymerase, are individually involved in the virulence of O/JPN/2010. Three-dimensional structural analysis of VP1 confirmed that amino acid differences between the two strains were located mainly at the domain interacting with the cellular receptor. On the other hand, measurement of their mutation frequencies demonstrated that O/JPN/2000 had higher replication fidelity than O/JPN/2010. IMPORTANCE Efforts to understand the universal mechanism of foot-and-mouth disease virus (FMDV) infection may be aided by knowledge of the molecular mechanisms which underlie differences in virulence beyond multiple topotypes and serotypes of FMDV. Here, we demonstrated independent genetic determinants of two FMDV isolates which have different transmissibility in cattle, namely, VP1 and 3D protein. Findings suggested that the selectivity of VP1 for host cell receptors and replication fidelity during replication were important individual factors in the induction of differences in virulence in the host as well as in the severity of outbreaks in the field. These findings will aid the development of safe live vaccines and antivirals which obstruct viral infection in natural hosts.


Author(s):  
S. S. Breese ◽  
H. L. Bachrach

Models for the structure of foot-and-mouth disease virus (FMDV) have been proposed from chemical and physical measurements (Brown, et al., 1970; Talbot and Brown, 1972; Strohmaier and Adam, 1976) and from rotational image-enhancement electron microscopy (Breese, et al., 1965). In this report we examine the surface structure of FMDV particles by high resolution electron microscopy and compare it with that of particles in which the outermost capsid protein VP3 (ca. 30, 000 daltons) has been split into smaller segments, two of which VP3a and VP3b have molecular weights of about 15, 000 daltons (Bachrach, et al., 1975).Highly purified and concentrated type A12, strain 119 FMDV (5 mg/ml) was prepared as previously described (Bachrach, et al., 1964) and stored at 4°C in 0. 2 M KC1-0. 5 M potassium phosphate buffer at pH 7. 5. For electron microscopy, 1. 0 ml samples of purified virus and trypsin-treated virus were dialyzed at 4°C against 0. 2 M NH4OAC at pH 7. 3, deposited onto carbonized formvar-coated copper screens and stained with phosphotungstic acid, pH 7. 3.


Sign in / Sign up

Export Citation Format

Share Document